. 1	~~~	3
- U	_	

حق چاپ، تکثیر و انتشار سؤالات به هر روش (الکترونیکی و ...) پس از برگزاری آزمون، برای تمامی اشخاص حقیقی و حقوقی تنها با مجوز این سازمان مجاز میباشد و با متخلفین برابر مقررات رفتار میشود.

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات جدول زیر، بهمنزله عدم حضور شما در جلسه آزمون است. اینجانب با آگاهی کامل، یکسان بودن شماره صندلی خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالها، نوع و کد کنترل درجشده بر روی دفترچه سؤالها و پایین پاسخنامهام را تأیید مینمایم.

امضا:

زبان عمومی و تخصصی (انگلیسی):

PART A: Vocabulary

<u>Directions</u>: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1-	But at this point, it' I'm still here.	s pretty hard to hurt i	my I'v	ve heard it all, and		
	1) characterization		2) feelings	2) feelings		
	3) sentimentality		4) pain			
2-	•		ver she's	to the sun.		
	-		3) invulnerable			
3-	Many of these popu	lar best-sellers will so	on become dated and .	, and		
	will eventually go ou	it of print.				
	1) irrelevant	2) permanent	3) fascinating	4) paramount		
4-	The men who arrive	d in the	of criminals were a	ctually undercover		
	police officers.					
	1) uniform	2) job	3) guise	4) distance		
5-		•	eals in bed, where all I	had to do was push		
	· · · · · · · · · · · · · · · · · · ·	s uneaten food and fall	· · · ·			
			3) convenient			
6-			in his home cou	•		
			and waving the nation			
	and the second		3) aspersion	20		
7-		0	nd the luster	on him by		
		his group of rich and o				
	1) conferred	2) equivocated	3) attained	4) fabricated		

PART B: Cloze Test

<u>Directions</u>: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

- 8- 1) which depending3) for depended
- 9- 1) have employed3) were employed
- 10- 1) some of these tutors could have3) that some of them could have
- 2) and depended
- 4) that depended
- 2) employed
- 4) employing
- 2) because of these tutors who have
- 4) some of they should have

PART C: Reading Comprehension

<u>Directions</u>: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

The modern mathematics of chance is usually dated to a <u>correspondence</u> between the French mathematicians Pierre de Fermat and Blaise Pascal in 1654. <u>Their</u> inspiration came from a problem about games of chance, proposed by a remarkably philosophical gambler, the chevalier de Méré. De Méré inquired about the proper division of the stakes when a game of chance is interrupted. Suppose two players, A and B, are playing a three-point game, each having wagered 32 pistoles, and are interrupted after A has two points and B has one. How much should each receive?

Fermat and Pascal proposed somewhat different solutions, though they agreed about the numerical answer. Each undertook to define a set of equal or symmetrical cases, then to answer the problem by comparing the number for A with that for B. Fermat, however, gave his answer in terms of the chances, or probabilities. He reasoned that two more games would suffice in any case to determine a victory. There are four possible outcomes, each equally likely in a fair game of chance. A might win twice, AA; or first A then B might win; or B then A; or BB. Of these four sequences, only the last would result in a victory for B. Thus, the odds for A are 3:1, implying a distribution of 48 pistoles for A and 16 pistoles for B. Pascal thought Fermat's solution unwieldy, and he proposed to solve the problem not in terms of chances but in terms of the quantity now called "expectation."

- 2) mutual cooperation
- 3) coordination by face-to-face interaction
- 4) communication by exchanging letters

12- The word "their" in paragraph 1 refers to

1) games of chance

2) Fermat and Pascal

3) modern mathematics

4) mathematics of chance

13- Who proposed a problem concerning games of chance that is somehow related to the origin of modern mathematics of chance?

1) A gambler

2) A journalist

3) A philosopher

4) A mathematician

14- According to the passage, which of the following statements is true?

- 1) Mathematics of chance essentially turned gambling into a scientific discipline.
 - 2) Modern mathematics of chance can be traced back to the 16th century.
 - 3) Pascal formulated his solution not in terms of probabilities but expectation.
- 4) The French philosopher, the chevalier de Méré, transformed the history of mathematics.

15- Paragraph 2 will probably continue with which of the following topics?

- 1) An example clarifying Pascal's solution
- 2) Further elaboration on Fermat's solution
- 3) An example of the solution offered by the chevalier de Méré
- 4) A second example of Fermat's solution to emphasize its difference from that of Pascal's

PASSAGE 2:

The aim of standard statistical analysis, typified by regression, estimation, and hypothesis testing techniques, is to assess parameters of a distribution from samples drawn of that distribution. [1] With the help of such parameters, one can infer associations among variables, estimate beliefs or probabilities of past and future events, as well as update those probabilities in light of new evidence or new measurements. [2] Causal analysis goes one step further; its aim is to infer not only beliefs or probabilities under static conditions, but also the dynamics of beliefs under changing conditions.

This distinction implies that causal and associational concepts do not mix. There is nothing in the joint distribution of symptoms and diseases to tell us that curing the <u>former</u> would or would not cure the latter. More generally, there is nothing in a distribution function to tell us how that distribution would differ if external conditions were to change—say from observational to experimental setup—because the laws of probability theory do not dictate how one property of a distribution ought to change when another property is modified. [3] This information must be provided by causal assumptions which identify relationships that remain invariant when external conditions change.

These considerations imply that the slogan "correlation does not imply causation" can be translated into a useful principle: one cannot <u>substantiate</u> causal claims from associations alone, even at the population level—behind every causal conclusion, there must lie some causal assumption that is not testable in observational studies. [4]

16-	The word "former" in paragraph 2 refers to						
	1) diseases	2) concepts	3) distribution	4) symptoms			
17-	The word "substant	ate" in paragraph	3 is closest in meaning t				
	1) rule out	2) prove	3) interpret	4) draw on			
18-	The passage mention	is all of the followi	ng terms EXCEPT				
	1) median		2) regression				
	3) joint distribution		4) causal assumption				

19- According to the passage, which of the following statements is true?

- 1) The function of causal analysis is confined to evaluating the parameters of a distribution from samples drawn of that distribution under fixed conditions.
- 2) The laws of probability theory are usually helpful in demonstrating how one property of a distribution should change when another property is modified.
- 3) Causal analysis has, in a sense, a more dynamic nature compared with standard statistical analysis.
- Causal and associational concepts, though apparently different, are essentially the same.
- 20- In which position marked by [1], [2], [3] or [4], can the following sentence best be inserted in the passage?

These tasks are managed well by standard statistical analysis so long as experimental conditions remain the same.

1)[1]	2) [2]	3) [3]	4) [4]
			/ L _ J

PASSAGE 3:

The models of data generation now used in mathematical statistics were mostly formulated before the Second World War. The basis of this model is the model of simple random sampling: the observed data included in a sample are considered to be some realizations of independent identically-distributed random variables with a distribution function F(x). In parametric formulations, F(x) belongs to a certain parametric family, and in nonparametric ones, F(x) is assumed to be continuous. In models of data generation in regression and discriminant analysis, time series statistics, and in other fields of applied statistics, it is <u>assumed</u> that the distribution functions possess the same properties. In nonparametric formulations, the assumption of existence of a continuous density and other regularity conditions are sometimes added.

Are these models realistic? To formulate an answer, let us discuss the relations between mathematics and statistics. Statistics consists of three parts: applied mathematical statistics, the theory and practice of statistical software, and the methodology of statistics. Applied mathematical statistics with analytic statistics constitute mathematical statistics as a part of mathematics. Applied mathematical statistics deals with actually used statistical procedures and develops new procedures to analyze real data; analytic statistics is concerned with the mathematical properties of statistical structures. It is clear that this division is rather conventional.

- 21-The word "assumed" in paragraph 1 is closest in meaning to1) put off2) put to use
 - 3) taken for granted 4) taken with a grain of salt
- 22- The passage employs which of the following techniques?
 - 1) Statistics
 - 2) Quotation
 - 3) Description based on chronological order
 - 4) Comparison

23- According to the passage, which of the following statements is true?

	2) In parametric for	partite concept of whormulations, $F(x)$ is as	sumed to be conti	inuous.	
	-	ic formulations, F(x) matical statistics dea	and the second sec	-	of
24-		ving terms best descri	bes the author's to	one in the nassage?	
-	1) Objective				
25-		ides sufficient inform			ing
	questions?				
		ore frequently used:	applied mathemat	ical statistics or analy	ytic
	II. What is the auth statistics?	or's intention in discu	ssing the relations	between mathematics a	and
	III. Who first rec formulations?	ognized the differenc	e between param	etric and nonparame	tric
	1) Only I	2) Only II	3) Only III	4) II and III	
		بر خطی، مبانی آنالیز ریاضی			
	ار $ec{\mathbf{a}} - ec{\mathbf{b}}$ کدام است؟	که باشند و ā ≠ b . طول بره	$\frac{a+b}{r} + \vec{a} \times \vec{b}$	فرض کنید بردارهای ä،	-79
				$\frac{r}{r}$ ()	
				۱ (۲	
				√ <u>۲</u> (۳	
				<u>√</u> " (f	
	ت است؟	. کدام مورد برای تابع f درس	$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x} + \mathbf{y} \mathbf{x}^{\mathbf{y}} \sin \mathbf{x} \\ \mathbf{y} \end{bmatrix}$	$\frac{\binom{1}{x}}{x} x \neq \circ$	-77
			L°	$\mathbf{x} = 0$	
				 (٥) 1 وجود ندارد. 	
				۲) تابع f روی بازههای ش	
			The second se	۳) تابع f روی بازههای ش ۴) تابع f روی بازههای ش	
			이 같은 것이 같은 것이 같아.	이 이 이 가지 않는 것이 같은 것이 같아.	
f(x+	f(x) = f(x) - f(y) + xy	نیقی x و y تساوی (x + y) /	l و بهازای هر دو عدد حا x	im 1(x) = ۱ فرض کنید im → • x	-27
			ا ۲۷ میر است؟ ۱۸ ه ۱۸ ماست؟	برقرار باشد. مقدار (k)'	
			K -11	۱۳۸۹ (۱	
				۱۳۹۰ (۲	
				۱۳۹۱ (۳	
				1898 (4	

$$\begin{aligned} -YA - \text{ and} = \text{tot} \text{ ideal} \text{ sets} \text{ int} \cos^{7} t & \text{ ideal} \text{$$

۳۳ شار گذرندهٔ بیرونی میدان برداری (
$$\mathbf{r} + \mathbf{x}^{\mathsf{T}}, \mathbf{z} \mathbf{x}^{\mathsf{T}} + \mathbf{x}^{\mathsf{T}}, \mathbf{z} \mathbf{x}^{\mathsf{T}} + \mathbf{x}^{\mathsf{T}}, \mathbf{z}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$$
 ()
 $\mathbf{r}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$ ()
 $\frac{1}{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$ ()
 $\frac{1}{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$ ()
 $\frac{1}{\mathsf{T}} \mathbf{x}^{\mathsf{T}} \mathbf{x$

 $= \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}$ ۲) مثلثی شونده است ولی قطری شدنی نیست. ۳) مثلثیشونده نیست و قطری شدنی نیست. ۴) مثلثی شونده نیست ولی قطری شدنی است. است? $\lim_{x\to \infty} \frac{\tan(ax) - a\tan(x)}{\sin(ax) - a\sin(x)}$ کدام است? -۴۱ ۲ (۱ a (1 -7 (7 - a (f $g(x) = \sup\{f(t): o \le t \le x\}$ فرض کنید $\mathbb{R} \to \mathbb{R}$ تابعی پیوسته باشد و g بر [o, 1] با ضابطه $f(t): o \le t \le x$ -47 تعريف شود. كدام مورد درست است؟ s (۱) ی از (۰, ۱) ییوسته است. g (۲ (۰, ۱) ییوسته است، ولی ممکن است در ۰ و ۱ ییوسته نباشد. براي $\mathbb{R} \in \mathbb{R}$ مجموعة $\{x: g(x) < r\}$ باز است، ولي g لزوماً پيوسته نيست. \mathbb{R} برای $g \in \mathbb{R}$ مجموعهٔ $\{x:g(x) > r\}$ باز است، ولی g لزوماً پیوسته نیست. $r \in \mathbb{R}$ فرض کنید $\mathbb{R} \to \mathbb{R}$ پیوسته باشد به طوری که برای $\circ < C$ و هر $\mathbb{R} \to \mathbb{R}$ نامساوی زیر برقرار است: -43 $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| \ge \mathbf{C} |\mathbf{x} - \mathbf{y}|$ کدام مورد نادرست است؟ بک همسان پختی است. $f: \mathbb{R} \to \mathbb{R}$ (۲ f (۱) اکیداً یکنواست. پیوسته یکنواخت است. $\mathrm{f}^{-1}\!:\!\mathrm{f}(\mathbb{R})\! o\!\mathbb{R}$ (۳ ۴) برد f در \mathbb{R} بسته است، ولى f لزوماً پوشا نيست. فرض کنید تابع حقیقی f بر f'(x) = a پیوسته و بر $\{1\} / \{1, \circ\}$ مشتق پذیر باشد. اگر f'(x) = a، آنگاه -44 کدام مورد درست است؟ ۱) مشتق f در نقطه x = ۱، لزوماً موجود نیست. ۲) مشتق f در نقطه x = 1 موجود و برابر a است. . اگر f' یکنوا باشد، مشتق f در نقطه x = 1 موجود و برابر با a است و شرط یکنوایی ضروری است.) مشتق f در نقطه x = x موجود است و اگر تابع f' پیوسته باشد، آنگاه f'(x) = a و شرط پیوستگی ضروری است. فرض کنید برای هر ۵، $a_{
m n} > a_{
m n} = \sum_{n=1}^{\infty} a_n$ همگرا است. کدام سری، واگرا است؟ –۴۵ $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ (r $\sum_{n=1}^{\infty} a_{n}^{p}, p > 1$ برای (۱ $\sum_{n=1}^{\infty} \sin(a_n)$ (f $\sum_{i=1}^{\infty} \frac{a_{i} + a_{i} \cdots + a_{n}}{n}$ (1)

- ۴۶- برای دادههای x_n,..., x₇, x₁ با میانه x̃، براساس ویژگیهای میانه، کدام مورد درست است؟) مقدار تابع $f(a) = \sum_{i=1}^{n} |x_i - a|$ باشد. (۱) مقدار تابع) مقدار تابع $f(a) = \sum_{i=1}^{n} (x_i - a)^{\gamma}$ وقتی مینیمم میشود که $a = \widetilde{x}$ باشد.) مقدار تابع $|x_i-a|$ مقدار تابع $f(a) = \sum_{i=1}^n |x_i-a|$ مقدار تابع (۳) اگر میانه یکتا نباشد، تابع $|x_i - a| = \sum_{i=1}^{n} |x_i - a|$ دارای مینیمم یکتا نیست. میانگین و انحرافمعیار درجه خلوص ماده شیمیایی A به تر تیب ۷۵ و ۵ درصد و برای ماده شیمیایی B میانگین و انحراف معیار به تر تیب ۸۵ و ۱۰ درصد است. در مورد درجه خلوص این دو ماده، چه اظهارنظری مي توان نمود؟ ۱) ماده A، خالص تر است. ۲) ماده B، خالص تر است. ۳) دو ماده از نظر درجه خلوص، بهطور متوسط یکسان هستند. ۴) نمی توان درجه خلوص دو ماده را مقایسه نمود. ۴۸ یک عکس خانوادگی را درنظر بگیرید که در آن، قرار است مادربزرگ در وسط یک ردیف از اعضای خانواده باشد. برای یک خانواده ۷ نفری (شامل مادربزرگ)، چند روش مختلف برای قرارگرفتن اعضای خانواده در این عکس وجود دارد؟ 790 (1 YY 0 (Y 707° ("
 - D040 (4
- ۴۹ براساس یک نظرسنجی، پاسخدهندگان دارای حداقل یکی از بیمههای خدمات درمانی یا بیمه درآمد ازکارافتادگی هستند. اگر x درصد از پاسخدهندگان دارای بیمه خدماتی درمانی، y درصد دارای بیمه درآمد ازکارافتادگی و z درصد فقط دارای بیمه خدمات درمانی باشند، احتمال اینکه پاسخدهندهای که بهطور تصادفی انتخابشده، فقط دارای بیمه ازکارافتادگی باشد، کدام است؟

$$\frac{y-x-\gamma z}{1\circ\circ} (1)$$

$$\frac{y-x+\gamma z}{1\circ\circ} (7)$$

$$\frac{y-x-z}{1\circ\circ} (7)$$

$$\frac{y-x+z}{1\circ\circ} (7)$$

۵۰ طبق یافتههای ژنتیکی بهدست آمده، دوقلوها را میتوان به دو گروه تقسیم بندی نمود: هموزیگوت یا هتروزیگوت. در گروه هموزیگوت، دو جنین تشکیل خواهد شد که ژنهای کاملاً مشابهی با یکدیگر دارند و در نتیجه، همیشه هم جنس هستند (هر دو پسر یا هر دو دختر). اگر در یک جامعه از دوقلوها، درصد دوقلوهای دختر ¹/₈ باشد، درصد دوقلوهای هموزیگوت کدام است؟
 ۸۱ صفر (۱) صفر (۱) صفر (۱) میتوان به دو تا میتوان به دو تا میتوان به دو گروه تقسیم بندی نمود: هموزیگوت یا هتروزیگوت. اگر در یک جامعه از دوقلوها، درصد دوقلوهای دختر ¹/₈ باشد، در صد دوقلوهای هموزیگوت کدام است؟

دروس تخصصی ۱ (احتمال(۱و۲)، آمار ریاضی(۱و۲)):

- - $P(X \le 1) \le P(W \le 17) \le P(Y \le -7) (7)$
 - $P(X \leq 1) \leq P(Y \leq -7) \leq P(W \leq 17)$ (f
- ۵۳- فرض کنید X یک متغیر تصادفی پواسون با تابع توزیع تجمعی F باشد، بهطوری که F(۲) = ۲/۶F(۱) . در این صورت، E(X) کدام است؟
 - ٣ (١
 - 7/7 (7
 - 4 (1
 - 4/4 (4

و (x $\in \mathbb{R}$ ، $f(x) = \frac{1}{\pi(1+x^{7})}$ اگر X دارای تابع چگالی احتمال $x \in \mathbb{R}$ ، $f(x) = \frac{1}{\pi(1+x^{7})}$ تصادفی $Y = (1 - F(X))^{T}$ تصادفی 17 (1 $\frac{\Delta}{\tau \Delta}$ (7 ۴ (۳ ۴) وجود ندارد. ۵۵- فرض کنید X و Y متغیرهای تصادفی مستقل هندسی با تابع جرم احتمال زیر باشند: $P(X=x)=p(1-p)^{x},$ $\mathbf{x} = \circ, \mathbf{1}, \mathbf{7}, \cdots$ مقدار Min(X, Y) = 1 و $P\{X = Y \}$ مقدار Min(X, Y) = 1p(1-p)(1) $p^{r}(1-p)$ (r $p(1-p)^{\gamma}$ (" $p^{r}(1-p)^{r}$ (f $P(X > Y) = \frac{1}{2}$ فرض کنید X و Y دو متغیر تصادفی مستقل باشند که $X \sim U(\circ, 1)$ و X $\sim U(\circ, \beta)$. Y $\sim U(\circ, \beta)$ باشد، مقدار β، كدام است؟ $\frac{1}{r}$ () $\frac{\pi}{r}$ (r ۲ (۳ F (F ۵۷ - فرض کنید X دارای توزیع پواسون با میانگین ۲ و Z دارای توزیع نرمال استاندارد، دو متغیر تصادفی مستقل از یکدیگر باشند. در مورد کران $P(Z^7 > \frac{X+1\circ}{X+Z^7})$ ، چه می توان گفت? ۱) حداقل <u>۳</u> ۲) حداکثر <mark>۳</mark> ۳) حداقل <u>۲</u> ۴) حداکثر ۲

۵۸ - فرض کنیـد X و Y دو متغیـر تصـادفی پواسـون مسـتقل بـا میـانگین برابـر بـا ۸ باشـند. مقـدار احتمـال کدام است? $P(X = \circ | X + Y = T)$ $\frac{e^{-\lambda}}{2}$ () $re^{-\lambda}$ (r ۴) د (۴ <u>'</u> (٣ ۵۹- برای دو متغیر تصادفی X و Y داریم: $M_{X+YY^{(t)}} = (1-Yt)^{-1}, M_{YX-Y^{(t)}} = e^{A(e^t-Y)}$ که در آن، M_Z(t) نشان دهنده تابع مولد گشتاورهای متغیر تصادفی Z است. با فرض این که ، کدام است Cov(X, Y)، کدام است Var(X) = Var(Y) $-\frac{k}{l}$ (1 $-\frac{1}{7}$ (7 1/ 1/ <u>)</u> (۴ فرض کنید X و Y دارای تابع چگالی توأم y > 0 x > 0, y > 0 باشد. ضریب همبستگی بین f(x,y) = e^{-7x - \frac{y}{7}} -9. X + Y و X + Y، كدام است؟ $-\frac{1}{1}$ (1 $-\frac{1\Delta}{1X}$ (7 -18 (r $-\frac{1\pi}{1\pi}$ (f $M(t) = \frac{e^{-t} + e^{t}}{r}$ یک نمونه تصادفی سهتایی از توزیعی با تابع مولد گشتاور X_{r}, X_{r}, X_{1} باشد. واریانس $\overline{\mathbf{X}} = \frac{\mathbf{X}_1 + \mathbf{X}_7 + \mathbf{X}_7}{\pi}$, چقدر است؟ $\frac{1}{8}$ (1 $\frac{1}{4}$ (7 $\frac{1}{r}$ (r <u>م</u> ۶ (۴

-81	در یک نمونه تصادفی ۵ تایی از توزیع گاما با پارامترهای ۱ و ۱، احتمال این که کوچک ترین مشاهده از میانه
	توزیع بزرگ تر باشد، کدام است؟
	$\frac{v}{rr}$ (1
	$\frac{\Delta}{\pi\tau}$ (r
	$\frac{r}{rr}$ (r
	$\frac{1}{\pi\tau}$ (f
-83	اگــر X ₇ , X ₇ , X ₇ متغیرهــای تصــادفی مســـتقل و هـــم توزیـــع از توزیـــع N ($rac{1}{7}, 1$ باشــند،
	کدام است؟ $\mathbf{E}\left(rac{\mathbf{X}_{1}^{Y}+Y\mathbf{X}_{Y}^{Y}-Y\mathbf{X}_{Y}^{Y}}{\mathbf{X}_{1}^{Y}+\mathbf{X}_{Y}^{Y}+\mathbf{X}_{Y}^{Y}} ight)$
	۱) صفر
	۲ (۲
	١ (٣
	$\frac{1}{r}$ (f
-94	فرض کنید X_1,\cdots,X_n یک نمونه تصادفی از توزیعی با تابع توزیع پیوسته F باشد. همچنین فرض کنید Y
	$X_{(1)}$ یک متغیر تصادفی دیگر از همان توزیع F و مستقل از X_i ها باشد. حاصل $(Y > X_{(1)})$ ، کدام است؟
	کوچک ترین آماره مرتب یک نمونه تصادفی به حجم n است.)
	$1 - \left(\frac{1}{\gamma}\right)^n$ (1)
	$1-\frac{1}{n}$ (7)
	$(1-(\frac{1}{\gamma})^{n+1})$ (r
	$1-\frac{1}{n+1}$ (f
-86	فرض کنید X _n ,,X _n یک نمونه تصادفی از توزیعی با تابع چگالی × <x, ((1+x)="" th="" و<=""></x,>
	Y _i = $\frac{n+1}{X_i+1}$ باشد. اگر (Y ₁ ,,Y _n) باشد. اگر (Y ₁ ,,Y _n) ، در این صورت (Y _i = $\frac{n+1}{X_i+1}$
	n ()
	$\frac{n+1}{r}$ (r
	n+1 (Y
	1 (۴

-99 فـرض کنیـد $X_{\gamma}, X_{\gamma}, X_$

فرض کنید متغیر تصادفی X، دارای تابع جرم احتمال زیر باشد. برآورد گشتاوری θ براساس نمونه تصادفی -8γ $X_n, ..., X_n$ ، کدام است؟

$$P(\mathbf{X} = \mathbf{X}) = \frac{\overline{\theta(\theta + 1)}}{\overline{\theta(\theta + 1)}} \mathbf{1}_{\{1, \tau, \dots, \theta\}}(\mathbf{X}) \qquad \frac{\overline{\tau X} - 1}{\tau} (1)$$

$$\frac{\overline{\tau X} + 1}{\tau} (\tau)$$

$$\frac{\overline{\tau X} - 1}{\tau} (\tau)$$

$$\frac{\overline{\tau X} + 1}{\tau} (\tau)$$

۶۸- از کیسهای شامل N مهره، ۱۵ مهره استخراج میکنیم. سپس آنها را علامت گذاری کرده و به کیسه برمی گردانیم. مجدداً ۱۰ مهره را به تصادف و با جایگذاری انتخاب میکنیم که از این تعداد، ۵ مهره علامت گذاریشده مشاهده میکنیم. بر آورد ماکسیمم درستنمایی N ، کدام است؟

- Yo (1
- 74 (1
- ۳۰ (۳
- ۳۵ (۴
- فرض کنید $X_n, ..., X_n$ نمونهای تصادفی از توزیع U(a-b, a+b) باشد. بر آورد ماکسیمم درستنمایی -۶۹

$$\begin{aligned} &(\frac{X_{(n)}+X_{(1)}}{r},X_{(n)}) \ (1) \\ &(X_{(1)},\frac{X_{(n)}-X_{(1)}}{r}) \ (7) \\ &(\frac{X_{(n)}-X_{(1)}}{r},\frac{X_{(1)}+X_{(n)}}{r}) \ (7) \\ &(\frac{X_{(1)}+X_{(n)}}{r},\frac{X_{(n)}-X_{(1)}}{r}) \ (7) \end{aligned}$$

۷۰ فرض کنید متغیر تصادفی X، دارای یکی از توابع احتمال زیر باشد:

	x,	x۲	x۳
f _{θ1} (x)	¢/ °	°/1	۰/۳
$f_{\theta\gamma}(x)$	°/ Y	°/ Y	°/1
$f_{\theta \gamma}(x)$	°/F	°/ f	۰/۲

آماره بسنده مینیمال برای θ، کدام است؟

$$T(x) = \begin{cases} 1 & x = x_{1} \\ \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} 1 & x = x_{1}, x_{\gamma} \\ \gamma & x = x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{1}, x_{\gamma} \\ \gamma & x = x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{1}, x_{\gamma} \\ \gamma & x = x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \\ \gamma & x = x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \\ \gamma & x = x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} \end{cases} (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma}, x_{\gamma} } (\gamma \qquad T(x) = \begin{cases} \gamma & x = x_{\gamma},$$

 $f_{\mu}(x) = 4e^{-4(x-\mu)}, \ x \ge \mu, \ \mu \in \mathbb{R}$ فرض کنید X_n, \dots, X_1 یک نمونه تصادفی از توزیعی با تابع چگالی -1باشد. مقدار ($\mathbf{X}_{(1)}$) باشد. مقدار ($\mathbf{X}_{(1)}$) باشد.

$$X_{(1)} + \frac{1}{\kappa n} (1)$$

$$X_{(1)} - \frac{1}{\kappa n} (7)$$

$$X_{(1)} - \frac{\kappa}{n} (7)$$

$$X_{(1)} + \frac{\kappa}{n} (7)$$

است $E(|X_1| \left| \max_{\substack{y \le i \le n}} |X_i| \right)$ باشد. $U(-\theta, \theta)$ باشد. X_1, \ldots, X_N نمونه ی کدام است $V_1 = 0$

$$\frac{\frac{n+i}{\gamma n} |X_{(n)}|}{\frac{|X_{(i)}|+|X_{(n)}|}{\gamma}} (i)$$

$$\frac{\frac{|X_{(i)}|+|X_{(n)}|}{\gamma}}{\gamma} (i)$$

$$\frac{\frac{1}{1} \sum_{1 \le i \le n} |X_i|}{\gamma} (i)$$

$$\frac{\frac{n+i}{\gamma n} \max_{1 \le i \le n} |X_i|}{\gamma} (i)$$

۷۳- فرض کنید X، دارای تابع احتمال زیر باشد:

$$P(X=x) = \frac{(e^{\theta} - 1)^{-1} \theta^{x}}{x!}, \quad x = 1, 7, \dots, \theta > 0$$

بر آورد UMVU برای
$$\theta$$
، کدام است؟

$$U(x) = \begin{cases} 1 & x = 1, 7 \\ x^7 & x = 7, 7, \dots \end{cases}$$

$$U(x) = \begin{cases} x & x = 1, 7 \\ x^7 & x = 7, 7, \dots \end{cases}$$

$$U(x) = \begin{cases} \circ & x = 1 \\ x & x = 7, 7, \dots \end{cases}$$

$$U(x) = \begin{cases} x & x = 1 \\ x & x = 7, 7, \dots \end{cases}$$

$$U(x) = \begin{cases} x & x = 1 \\ x^7 & x = 7, 7, \dots \end{cases}$$

فرض کنید X_n ,..., X_n نمونهای تصادفی از توزیع پواسون با پارامتر λ باشد. UMVUE پارامتر -۷۴

$$\begin{split} (\overline{X} = \frac{T}{n}, T = \sum_{i=1}^{n} X_i) & \text{كدام است } (P(X = i))^m \\ & (i - \frac{m}{n})^T T(T - i) \cdots (T - m + i) & (i \\ \frac{(n - m)}{n^T}^{T - m} T(T - i) \cdots (T - m + i) & (i \\ (i - \frac{m}{n})^T T(T - i) \cdots (T - m) & (i \\ (i - \frac{m}{n})^T T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T}^{T - m} T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T}^{T - m} T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T}^{T - m} T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T} T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T}^{T - m} T(T - i) \cdots (T - m) & (i \\ \frac{(n - m)}{n^T} T(T - i) \cdots (T - m$$

$$\frac{\lambda}{r}$$
 (r)
 $\frac{r}{\lambda}$ (r)

$$\begin{split} & - \forall \varphi = \frac{1}{2} (\mathbf{x} + \mathbf{y} + \mathbf{x} + \mathbf{x}$$

$$\frac{1 \circ}{78} (1)$$

$$\frac{1 \circ}{78} (7)$$

$$\frac{1}{78} (7)$$

$$\frac{1}{78} (7)$$

$$\frac{1}{78} (7)$$

$$\frac{1}{78} (7)$$

دو متغیر تصادفی مستقل X_{γ}, X_{1} با توزیع i = 1, 7 ، $N(\theta_{i}, \sigma_{i}^{\gamma})$ ، را درنظر بگیرید. براساس ناحیه بحرانی $-\gamma \eta = X_{\gamma}, X_{1}$ بر مقابل $H_{1}: \theta_{\gamma} > \tau \Theta_{1}$ در مقابل $H_{0}: \Theta_{\gamma} = \tau \Theta_{1}: \Theta_{\gamma} = \tau \Theta_{1}$ کدام است? $(X_{1}, X_{\gamma}): \overline{X} > \tau X_{1}$ $N(\theta_{1}, \Theta_{\gamma}) = 0$ (1) ا

دو مهره سفید باشد، فرض \mathbf{H}_{o} رد میشود. توان آزمون، کدام است؟

- . .
- °/۵ (۳
- °/50 (F

-۸۰ فرض کنید
$$X_n, \dots, X_n$$
 نمونه ی تصادفی از توزیعی با تابع چگالی زیر باشد:
 $f_{\theta}(x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad \circ < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad \circ < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad \circ < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad \circ < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad \theta > \circ$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad 0 > 0$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad 0 > 0$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad 0 > 0$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad 0 > 0$

 $identified (x) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, \quad 0 < x < 1, \quad 0 < 1, \quad$

۸۱ - فرض کنید X یک متغیر تصادفی گسسته با یکی از توابع احتمال زیر باشد:

1	xη	x۲	x٣	Xę	x۵
$\mathbf{f}_{\theta=\circ}(\mathbf{x})$	۰/۲	°/ ۳	۰٫۱	°/ ۳	۰/۱
$f_{\theta=\circ}(x)$ $f_{\theta=1}(x)$ $f_{\theta=1}(x)$	۰/۳	۰/۳	۰/۱	°/ Y	۰/۱
$f_{\theta=\gamma}(x)$	۰/۱	۰/۱	°/ Y	°/ ۳	°/٣

در آزمون فرض ه=θ: H₀ در مقابل ∘≠H₁:0 آزمون نسبت درستنمایی در سطح معنیداری ۱۵/° کدام است؟

۸۲- فرض کنید X دارای تابع احتمال زیر باشد.

$$\mathbf{f}_{\theta}(\mathbf{x}) = \mathcal{P}(\mathbf{1} - \mathcal{P}^{-\frac{1}{\theta}})\mathcal{P}^{-\frac{\mathbf{x}}{\theta}} \quad \mathbf{x} = \theta, \theta + 1, \cdots$$

$$\mathbf{f}_{\theta}(\mathbf{x}) = \mathcal{P}(\mathbf{1} - \mathcal{P}^{-\frac{1}{\theta}})\mathcal{P}^{-\frac{\mathbf{x}}{\theta}} \quad \mathbf{x} = \theta, \theta + 1, \cdots$$

$$\mathbf{H}_{0}(\mathbf{x}) = \mathbf{H}_{0}(\mathbf{x}) = \mathbf{H}_{0}(\mathbf{x})$$

$$\mathbf{H}_{0}(\mathbf{x}) = \mathbf{H}_{0}(\mathbf{x})$$

دروس تخصصی ۲ (نمونهگیری(او۲)، رگرسیون ۱):

- ۴) ۴ و ۱۶۰

میخواهیم از یک نمونه nتایی جهت بر آورد میانگین جامعهای شامل N مقدار $y_1, y_7, ..., y_N$ استفاده کنیم. نفرات اول و دوم جامعه تصمیم دارند درصورت انتخاب، بهترتیب، ۲ و $\frac{1}{7}$ برابر مقادیر واقعی خود را گزارش کنند. در اینصورت، میانگین معمولی یک نمونه تصادفی ساده برای میانگین جامعه، در کدام صورت نااریب است؟ $y_1 = y_7$ (۱)

 $y_r = ry_1$ (r

۴) هیچیک از دو عنصر اول و دوم در نمونه انتخاب نشوند.

- ۸۸ در نمونه گیری تصادفی ساده با استفاده از اطلاعات کمکی، اگر y صفت اصلی و x صفت کمکی باشد، در کدام صورت، بر آوردگرهای نسبتی بر بر آوردگرهای معمولی بر تری دارند؟
 ۱) y بزرگ تر از x باشد.
 ۲) خط رگرسیون y بر x از مبدأ بگذرد و ارتباط خطی معکوس باشد.
 ۳) ارتباط خطی قوی بین دو صفت x و y برقرار باشد.
 ۹) خط رگرسیون y بر x از مبدأ بگذرد و ارتباط خطی معکوس باشد.
- ۸۹ اگر اندازه نمونه لازم برای بر آورد میانگین جامعه را براساس میزان واریانس این بر آورد تعیین کنیم و این n اندازه در نمونهگیری تصادفی ساده بدون جایگذاری و با جایگذاری به تر تیب برابر n و n باشد، آنگاه برحسب n کدام است؟

$$\frac{\frac{n_{\circ}}{\gamma - \frac{n_{\circ} - \gamma}{N}} (\gamma)}{\frac{n_{\circ}}{\gamma + \frac{n_{\circ}}{N - \gamma}}} (\gamma)$$
$$\frac{\frac{n_{\circ}}{\gamma + \frac{n_{\circ} - \gamma}{N}} (\gamma)}{\frac{n_{\circ}}{\gamma - \frac{n_{\circ}}{N}}} (\gamma)$$

- ۹۰ جامعهای بزرگ به دو طبقه با اندازههای برابر افراز شده است. درصد اعضای دارای یک ویژگی در طبقه اول در فاصله (۰٫۰٫۷) و در طبقه دوم در فاصله (۰٫۰٫۷) قرار دارد. اندازه کل نمونه در تخصیص نیمن برای بر آورد درصد اعضای دارای این ویژگی در جامعه، وقتی ماکسیمم واریانس بر آوردگر برابر ۵۰/۵ باشد، کدام است؟
 ۱) ۶
 - F (T
 - ۹ (۳

 - 10 (4
- جامعهای با N خوشه M تایی وجود دارد. برای مقایسه دقت نمونه گیری خوشهای یک مرحلهای وقتی n خوشه N جوشه به تصادف انتخاب شوند و نمونه گیری تصادفی ساده با حجم برابر nM، اگر S_b^V واریانس بین مقادیر کل (مجموع مقادیر) خوشههای جامعه و S^V واریانس کل جامعه باشد، دقت این دو روش نمونه گیری چه موقع یکسان است؟
 - $S_{b}^{\gamma} = MS^{\gamma}$ ()
 - $S^{r} = MS^{r}_{b}$ (r
 - $S^{r} = nMS^{r}_{b}$ (r
 - $S_b^r = nMS^r$ (f

۹۲- از جامعهای متشکل از ۱۲ خوشه، به تصادف دو خوشه را انتخاب نمودهایم. مقادیر صفت y و فراوانی آنها در جدول زیر مشخص شدهاند. بر آوردی نااریب برای مقدار کل صفت y، کدام است؟ 110 (1 ۲ 1 مقادیر صفت y 0 100 (1 ۲ ٣ خوشه اول نمونه ۵ ۲ 150 (10 ٨ خوشه دوم نمونه 90 (4 واریانس بر آوردگر میانگین جامعه با استفاده از یک نمونه سیستماتیک (سامانمند) ۲ تایی از جامعهای به حجم -9٣ ؟ با مقادير $y_{4} = 1, y_{7} = 4, y_{7} = 0, y_{1} = x$ ، كدام است T/TD (T r (1 4/0 (4 r,8 (r ۹۴- از جامعهای به حجم ۱۰۰، نمونهای ۱۰ تایی به روش تصادفی ساده بدون جایگذاری انتخاب کردهایم. اگر فاصله اطمینان برای میانگین جامعه بهصورت (۱۲٫۱۸) باشد، ضریب تغییرات نمونه کدام است؟ (z ≃ ۲) $\frac{\pi}{r}$ () $\frac{r}{\Delta}$ (r 1 (۴ 7 (7 در مدل رگرسیونی $y_i = \beta_1 x_i + \epsilon_i$ ، اگر $e_i = y_i - \hat{y}_i$ ها نشان دهنده باقی مانده ها باشند، کدام مورد درست است -9 $\frac{1}{n}\sum_{i=1}^{n}x_{i}e_{i}=0 \quad (\forall$ $\frac{1}{n}\sum_{i=1}^{n}e_{i}=0$ (1) $\frac{1}{n}\sum_{i=1}^{n}y_{i}e_{i}=0$ (7) $\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\gamma}e_{i}=0 \quad (f$ $y_i = \beta_\circ + \beta_0 x_i + \varepsilon_i$ در مدل رگرسیون خطی ساده $y_i = \beta_\circ + \beta_0 x_i + \varepsilon_i$ در صورتی که $x_i = \circ$ ، آنگاه کدام عبارت درست است -98 $\hat{\beta}_{1} = \circ$ (1) $\hat{\beta}_{\circ} = \circ$ (7 $Var(\hat{\beta}_{1}) = Var(\hat{\beta}_{1})$ (" β, β. (۴ ناهمىستەاند. در مدل رگرسیونی $y_i = \frac{\beta}{\sqrt{x_i}} + \varepsilon_i$ برای $y_i = 1, 7, ..., n$ اگر خطاها دارای توزیع نرمال استاندارد باشند، واریانس بر آوردگر کمترین توانهای دوم β، کدام است؟ ۱) میانگین هارمونیک Xi ها ۲) میانگین هندسی _۲ز ها

- ۳) میانگین حسابی ۲_۱ها ۳) میانگین حسابی ۲_۱ها
- ۴) میانگین توان دوم x_i ها

در مدل رگرسیون خطی ساده vi = β_+ β_1x_i + ٤، اگر SST = ۸ و S _{xx} = ۲ و S _{xx} = ۲ و R ^۲ = ۰/۲۵ باشد، آنگاه	-98
β کدام است؟	
°/۵ (۱	
١ (٢	
1/2 (**	
۲ (۴	
اگر در برازش مدل رگرسیون خطی ساده y _i = β ₀ + β ₁ x _i + ε _i برای i = ۱, , n یکی از مشاهدات بهصورت	-99
(x , y) باشد و آن را از مدل حذف و مدل جدیدی با n−1 مشاهده برازش دهیم، کدام مورد زیر تغییر میکند؟	
۱) ضریب تعیین ۲	
۲) مجموع مربعات کل SST	
${\hat{ ext{y}}_{ ext{i}}}={\hat{eta}_{\circ}}+{\hat{eta}_{ ext{v}}}{ ext{x}_{ ext{i}}}$ مدل پیش بینی (۳	
$\mathrm{H}_{1}\!:\!eta_{1} eq$ امارہ F در آزمون $\mathrm{H}_{\circ}\!:\!eta_{1}=0$ در مقابل $\mathrm{H}_{\circ}\!:\!eta_{1}=0$	
دو مــــدل رگرســـيونی خطـــی ســاده y_i = β_{01} + β_1^* x_{i1} + ε_i و y_i = β_{01} + β_1^* x_{i1} و مـــدل	-1++
$ ilde{x}_{1} = (x_{11},,x_{n1})$ را درنظـــر بگیریـــد. اگـــر بـــردار مشـــاهدات $y_{i} = eta_{\circ} + eta_{1}x_{i1} + eta_{7}x_{i7} + arepsilon_{i}$ و	
אַר (x ₁₇ ,,x _{n۲}) مستقل باشند، آنگاه کدام عبارت درست است؟	
$\hat{eta}^*_{ au} = \hat{eta}_{ au}$ is $\hat{eta}^*_{ au}$ is $\hat{eta}^*_{ au} = \hat{eta}_{ au}$ is $\hat{eta}^*_{ au}$ is $\hat{eta}^*_{ au}$ is $\hat{eta}^*_{ au} = \hat{eta}_{ au}$ is $\hat{eta}^*_{ au}$ is $\hat{eta}^*_{$	
$\hat{\boldsymbol{\beta}}_{\circ} = \hat{\boldsymbol{\beta}}_{\circ 1} = \hat{\boldsymbol{\beta}}_{\circ T}$ (7	
$\hat{\beta}_{r}^{*} = \hat{\beta}_{r}$, $\hat{\beta}_{1}^{*} = \hat{\beta}_{1}$, σ	
$\hat{\beta}_{\circ} = \hat{\beta}_{\circ\gamma} = \hat{\beta}_{\circ\gamma} = \hat{\beta}_{\gamma} = \hat{\beta}_{\gamma} = \hat{\beta}_{\gamma} = \hat{\beta}_{\gamma}$ (*	
در مدل رگرسیونی $\mathfrak{e}_i \sim N(\circ, \sigma^7)$ که $y_i = \beta_\circ + \beta_1 x_{i1} + \beta_7 x_{i7} + \epsilon_i$ است، برای نمونه تصادفی ۵ تایی	-1+1
مقادیر $\hat{\mathbf{y}}_{\mathbf{i}}$, بهصورت زیر بهدست آمده است. بر آورد نااُریب σ^{Y} ، کدام است؟	
$\frac{\mathbf{y}_{\mathbf{i}}}{\mathbf{\hat{y}}_{\mathbf{i}}} \begin{vmatrix} \mathbf{Y} & -\mathbf{Y} & \mathbf{W} & -\mathbf{I} & -\mathbf{Y} \\ \hline \mathbf{\hat{y}}_{\mathbf{i}} \end{vmatrix} 1 \mathbf{\circ} 1 -\mathbf{I} -\mathbf{I} \qquad \qquad$	
$\frac{1}{r}$ (r	
۵ (۳	
۱۰ (۴	
در یک مدل رگرسیون چندگانه با ۳ متغیر مستقل x، ، x، و x _۳ و براساس n = ۱۰ نمونه، ضریب تعیین چندگانه	-1+7
تعدیلشده ۲ _/ ۵ = R ^۲ adj ، بهدست آمده است. مقدار F در جدول تجزیه واریانس، کدام است؟	
$\frac{1}{2}$ ()	

$\hat{\beta}_1$ اگر مدل ناقص $y_i = \beta_1 x_{i1} + \beta_7 x_{i7} + \varepsilon_i$ را بهجای مدل درست $y_i = \beta_1^* x_{i1} + \varepsilon_i$ برازش دهیم و	-1•٣
بهترتیب برآورد ضرایب β ₁ و β ₁ باشند، آنگاه <mark>(Var(β̂1)</mark> ، کدام است؟ بهترتیب برآورد ضرایب β ₁ و β ₁ باشند، آنگاه	
1 ()	
$\frac{\left(\sum x_{i\lambda}x_{i\tau}\right)^{\tau}}{\sum x_{i\lambda}^{\tau}\sum x_{i\tau}^{\tau}} \ (\tau$	
$1 - \frac{\left(\sum x_{i\lambda} x_{i\tau}\right)^{\tau}}{\sum x_{i\lambda}^{\tau} \sum x_{i\tau}^{\tau}} \ (\tau')$	
$1 + \frac{\left(\sum x_{i\lambda} x_{i\gamma}\right)^{r}}{\sum x_{i\lambda}^{r} \sum x_{i\gamma}^{r}} $ (F	
در مــــدل رگرســــدان ، i = ۱, ۲,, n بـــدل ر $y_i = \beta_\circ + \beta_1 x_{i1} + \beta_7 x_{i7} + \varepsilon_i$ در مـــد	-1+4
∘ = x _{i۱} x _{i۲} =∑ x _{i۱} x _{i۲} =∑ ، آنگــاه كــدام مــورد دربــاره VIF (عامــل تــورم واريــانس)	
همواره درست است؟	
$VIF(x_j) = 1, j = 1, \tau$ (1)	
$VIF(x_j) > 1, j = 1, 7 (7)$	
$VIF(x_1) + VIF(x_7) = 1$ (r	
$VIF(x_j) < 1, j = 1,7$ (f	
$(\mathbf{x} = (\mathbf{x}_1 : \mathbf{x}_7))$ در رگرسیون افراز شده $\mathbf{y} = \mathbf{x}_1 \boldsymbol{\beta}_1 + \mathbf{x}_7 \boldsymbol{\beta}_7 + \boldsymbol{\varepsilon}$ ، کدام مورد درست است	-1•0
$\hat{\beta}_{1} = (x_{1}'x_{1})^{-1}x_{1}'y$ (1)	
$\hat{\beta}_1 = (x' x)^{-1} x' y$ (7)	
$\mathbf{p}_{1} = (\mathbf{X} \ \mathbf{X}) \ \mathbf{X} \mathbf{y} \ (1)$	

$$\hat{\beta}_{1} = (x'_{1} x_{1})^{-1} (x'y + x'_{1} x_{7} \hat{\beta}_{7})$$
("

$$\hat{\beta}_{1} = (x'_{1} x_{1})^{-1} (x'_{1} y - x'_{1} x_{r} \hat{\beta}_{r})$$
 (f

به اطلاع می رساند، کلید اولیه سوالات که در این سایت قرار گرفته است، غیر قابل استناد است و پس از دریافت نظرات داوطلبان و صاحب نظران کلید نهایی سوالات تهیه و بر اساس آن کارنامه داوطلبان استخراج خواهد شد. در صورت تمایل می توانید حداکثر تا تاریخ 1402/12/0 با مراجعه به سامانه پاسخگویی اینترنتی (request.sanjesh.org) نسبت به تکمیل فرم "اعتراض به کلید سوالات"/"آزمون کارشناسی ارشد سال 1403" اقدام نمایید. لازم به ذکر است نظرات داوطلبان فقط تا تاریخ مذکور و از طریق فرم ذکر شده دریافت خواهد شد و به موارد ارسالی از طریق دیگر (نامه مکتوب یا فرام عمومی در سامانه پاسخگویی و ...) یا پس از تاریخ مذکور و از طریق فرم ذکر شده دریافت خواهد شد و به موارد ارسالی از طریق دیگر (نامه مکتوب یا فرم عمومی در سامانه پاسخگویی و ...) یا پس از تاریخ اعلام شده رسیدگی نخواهد شد.

گروه امتحانی			نوع دفترچه			عنوان دفترچه		
	گروه علوم پایه			A			امار	
شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	
1	2	31	2	61	3	91	1	
2	4	32	2	62	4	92	3	
3	1	33	4	63	1	93	2	
4	3	34	1	64	4	94	4	
5	3	35	3	65	1	95	2	
6	4	36	4	66	1	96	4	
7	1	37	4	67	1	97	1	
8	2	38	2	68	3	98	2	
9	2	39	1	69	4	99	4	
10	1	40	3	70	1	100	3	
11	4	41	3	71	2	101	3	
12	2	42	1	72	4	102	4	
13	1	43	4	73	3	103	3	
14	3	44	2	74	2	104	1	
15	1	45	3	75	2	105	4	
16	4	46	3	76	1			
17	2	47	1	77	1			
18	1	48	2	78	2			
19	3	49	4	79	3			
20	2	50	1	80	4			
21	3	51	1	81	2			
22	4	52	2	82	3			
23	1	53	3	83	4			
24	1	54	3	84	2			
25	2	55	4	85	1			
26	4	56	3	86	3			
27	4	57	2	87	2			
28	4	58	4	88	4			
29	1	59	2	89	3			
30	3	60	2	90	2			