کد کنترل

جمهوری اسلامی ایران وزارت علوم، تحقیقات و فنّاوری «در زمینه مسائل علمی، باید دنبال قلّه بود.» مقام معظم رهبری

سازمان سنجش آموزش کشور

آزمون ورودي دورههاي كارشناسيارشد ناپيوسته داخل ـ سال 1403

علوم کامپیوتر (کد ۱۲۰۹ ـ (شناور))

مدتزمان پاسخگویی: ۲۴۰ دقیقه

عصر جمعه ۱۴۰۲/۱۲/۰۴

تعداد سؤال: ۱۳۰

عنوان مواد امتحانی، تعداد و شماره سؤالها

تا شماره	از شماره	تعداد سؤال	مواد امتحاني	ردیف
۲۵	١	۲۵	زبان عمومی و تخصصی (انگلیسی)	١
۶.	45	۳۵	دروس پایه (ریاضی عمومی(۱و۲)، مبانی علوم ریاضی، مبانی ماتریسها و جبر خطی، مبانی آنالیز ریاضی، مبانی آنالیز عددی و مبانی احتمال)	٢
۹.	۶۱	٣٠	ساختمان دادهها، طراحی الگوریتمها و مبانی نظریه محاسبه	٣
11+	٩١	۲٠	مبانی منطق و نظریه مجموعهها	۴
١٣٠	111	۲٠	ریاضیات گسسته و مبانی ترکیبیات	۵

این آزمون، نمره منفی دارد.

استفاده از ماشین حساب مجاز نیست.

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات جدول زیر، بهمنزله عدم حضور شما در جلسه آزمون است. اينجانب با شماره داوطلبي با شماره داوطلبي بينجانب با آگاهي كامل، يكسان بودن شماره صندلی خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالها، نوع و کد کنترل درجشده بر روی دفترچه سؤالها و پایین پاسخنامهام را تأیید مینمایم. امضا:

زبان عمومی و تخصصی (انگلیسی):

PART A: Vocabulary

Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1-		el at what you love and		e next level, you need
	to make a	to both yourself	f and your craft.	
	1) commitment	2) passion	3) statement	4) venture
2-	It is usually difficu	lt to cle	arly between fact and	d fiction in her books.
	1) gloat	2) rely	3) raise	4) distinguish
3-	Some people seem	to lack a moral	, but thos	se who have one are
	capable of making	the right choice when o	confronted with diffi	cult decisions.
	1) aspect	2) compass	3) dilemma	4) sensation
4-	The factual error i	nay be insignificant; bu	it it is surprising in a	book put out by a/an
	aca	ademic publisher.		
	1) complacent	2) incipient	3) prestigious	4) notorious
5-	In a society conditi	ioned for instant	most peop	le want quick results.
	1) marrow	2) gratification	3) spontaneity	4) consternation
6-		alified official was		
	그 경우 아이트 아이트 아이를 걸게 하는데 아이트 아이트 아이들이 그 아프트아이	et not have its medie	마스트 : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] : [10] :	
	commercial oppor	tunity.		5
	1) incredulous	2) quintessential	3) appeased	4) exhilarated
7-		ological gardens alway		The state of the s
	put there expressly	for the entertainment	of the public.	
		2) surmise	_	4) appall
		*** *** **** *** *** *** *** *** *** *		· 11

PART B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

Online learning has been around for years, but it really took off during the transition to online learning, and this trend is likely to continue in the future. There are many benefits to online learning, (9) accessibility and flexibility. Students can learn at their own pace, and from anywhere in the world.

- 8- 1) forced to
 - 3) were forced to
- 9- 1) including increased
 - 3) and increase
- 10- 1) is also more
 - 3) which is also more

- 2) have forced
- 4) forcing
- 2) they include increasing
- 4) they are increased
- 2) also to be more
- 4) is also so

PART C: Reading Comprehension

<u>Directions</u>: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Theoretical concepts can take decades to be assimilated into the mainstream of computing, but when they are assimilated, they can have a profound practical impact. The stored-program computer, a concept central to computer science, owes its origins to Alan Turing, who studied the fundamental nature of computation in the 1930's. The practice of programming computers was significantly advanced by the development of the theory of automata and languages by Chomsky and others in the 1950's. Building on the foundations of context-free grammars, Knuth and others introduced algorithms and data structures for the efficient and practical parsing of high-level languages, leading to tools such as YACC, thereby enabling the software revolution of the 1960's. In the 1970's, theoreticians, exploring the intrinsic complexity of computational problems, identified the large class of NPcomplete problems, everyday problems that appear to be so difficult to solve that no foreseeable increase in computing power would enable their exact solution. Theoreticians interested in studying computational complexity were led to the discovery of hard problems that serve as the underpinnings for modern computersecurity systems, notably the RSA public-key cryptosystem. Also, they have demonstrated the utility of mathematical logic and automata theory to the verification of complex computer systems; for example, model-checking technology is now widely used by hardware vendors.

11-	The word "impac	t" in the passage is clos	sest in meaning to	
	1) influence	2) orientation	3) meaning	4) knowledge
12-	The word "they"	in the passage refers to		0 170
	1) origins		2) decades	
	3) theoretical con	cepts	4) programming	computers
13-	All of the followin	g words are mentioned	l in the passage EXC	EPT
	1) algorithms		2) cryptosystem	
	3) the binary syst	em	4) hardware ven	dors

14- According to the passage, which of the following statements is true about Alan Turing?

- 1) He was initially known as the person who built the first computer.
- 2) He was the leading figure in designing computer tools like YACC.
- 3) The foundations of context-free grammars were transformed by his theoretical ideas.
- 4) A key concept in computer science can be traced back to him, who is in a way credited with being its originator.

15- According to the passage, which of the following statements is true?

- 1) Theoretical concepts are usually immediately integrated into mainstream computing.
- Chomsky was among the people who originally proposed the first RSA public-key cryptosystem.
- Mathematical logic and automata theory have proven useful in verifying intricate computer systems.
- 4) The large class of NP-complete problems was identified by accident when theoreticians were exploring the complexity of computational problems in the early 20th century.

PASSAGE 2:

People have been using mechanical devices to aid calculation for thousands of years. For example, the abacus probably existed in Babylonia (present-day Iraq) about 3000 B.C.E. The ancient Greeks developed some very sophisticated analog computers. In 1901, an ancient Greek shipwreck was discovered off the island of Antikythera. Inside was a salt-encrusted device (now called the Antikythera machine) that consisted of rusted metal gears and pointers. When this c. 80 B.C.E. device was reconstructed, it produced a mechanism for predicting the motions of the stars and planets.

John Napier (1550-1617), the Scottish inventor of logarithms, invented Napier's rods (sometimes called "Napier's bones") c. 1610 to simplify the task of multiplication. In 1641, the French mathematician and philosopher Blaise Pascal (1623-1662) built a mechanical adding machine. Similar work was done by Gottfried Wilhelm Leibniz (1646-1716). Leibniz also advocated use of the binary system for doing calculations.

Recently it was discovered that Wilhelm Schickard (1592-1635), a graduate of the University of Tübingen (Germany), constructed such a device in 1623-4, before both Pascal and Leibniz. A brief description of the device is contained in two letters to Johannes Kepler. Unfortunately, at least one copy of the machine burned up in a fire, and Schickard himself died of bubonic plague in 1635, during the Thirty Years' War.

16-	The word "pred	licting" in paragraph 1 is	closest in meaning to					
	1) sorting	2) anticipating	3) modifying	4) formulating				
17-	The word "it" i	n paragraph 1 refers to						
	1) metal	2) island	3) device	4) mechanism				
18-	All of the following statements are true about Blaise Pascal EXCEPT that							
	1) he was a Fre	nch philosopher						
	2) he was a 17th-century mathematician							
	3) he constructed a mechanical adding device							

4) he proposed the binary system for doing calculations

19-According to the passage, which of the following statements is true?

- 1) John Napier proposed a plan for a mechanical adding machine.
- 2) Wilhelm Schickard invented a device to show the movement of the stars.
- 3) The inventor of logarithms also invented a device to facilitate the task of multiplication.
- 4) Gottfried Wilhelm Leibniz died of bubonic plague in the 17th century, during the Thirty Years' War.

Which of the following best describes the tone of the passage? 20-

2) Passionate 1) Ironic

3) Objective

4) Ambivalent

PASSAGE 3:

The period from 1950 to 1970 witnessed significant hardware developments that revolutionized computer design and architecture. Vacuum tubes, which were initially used to represent bits in circuits, were replaced by transistors. [1] Transistors offered greater efficiency and the ability to accommodate thousands of them in a single circuit, resulting in a tremendous increase in computational power.

During this time, high-level programming languages like BASIC were introduced. [2] IBM played a pivotal role by introducing standardized computers that could be programmed for various use cases and industries. Integrated circuits emerged, allowing for even smaller chips with more powerful computational capabilities. [3] Concepts such as time-sharing algorithms and multiple-user access were developed, enabling multiple users to share computing resources effectively.

Two major programming languages that emerged during the 1960s to 1970s were C and Pascal. C became a foundational language for many modern programming languages, including JavaScript and Python. [4] Researchers and programmers started solving various problems using the power and flexibility of the C language.

Overall, the period from 1950 to 1970 witnessed groundbreaking advancements in hardware, programming languages, and computer architecture, laying the foundation for the digital era that would follow. These developments set the stage for the rapid progress and innovation that would shape the field of computer science in the years to come.

21-	The word "pivotal" in paragraph 2 is closest in meaning to						
	1) key	2) theoretical	3) peripheral	4) hypothetical			
22-	All of the following	g programming langua	ages are mentioned in	the passage EXCEPT			
	 JavaScript 	2) Kotlin	3) Pascal	4) BASIC			
23-	According to the	passage, which of the f	ollowing statements is	true?			

- - 1) The programming language C was in a way influential in the emergence of BASIC, which was the easiest programming language to learn.
 - 2) The programming language C appeared in the early 20th century and was among the popular languages during the 1960s to the 1970s.
 - 3) Vacuum tubes, used to represent bits in circuits, should in fact be considered the modern counterparts of transistors.
 - 4) Revolutionary developments in hardware, programming languages, and computer architecture that took place from 1950 to 1970 paved the way for further progress in the field of computer science in the following years.

e (۴

24-			[3], [3] or [4], can the follow	ving sentence bes	st be		
	inserted in the passage? Its versatility and efficiency greatly expanded the capabilities of programming languages						
	and the second of the second o		ns and perform tasks more ef		0		
	1)[1]	2) [2]	3) [3]	4) [4]			
25-		provides sufficient in	nformation to answer wh	ich of the follo	wing		
	questions?	any first invented cor	nnuter transistors?				
	II. Did IBM in		to the development or spi	read of program	ming		
	languages?	most fraquently use	d computer language?				
	1) Only I	2) Only II	3) Only III	4) II and III			
	-,,	-,,	-,	,,			
أناليز	<i>آنالیز ریاضی،</i> مب <i>انی</i>	نریسه <i>ا و جبر خطی،</i> مب <i>انی</i>	(او۲)، مبانی علوم ریاضی، مبانی ما				
				و مبانی احتمال):			
		كدام است؟	$z^{\Upsilon} + \Im \overline{z} + \Upsilon z + i \operatorname{Im}(z) = 1$ لهٔ	تعداد ریشههای معاه	-48		
				۱) صفر			
				۲ (۲			
				٣ (٣			
				4 (4			
			(t+	1) ^{t+1} -t-1	~		
			ا کدام است؛ $\lim_{t \to \infty} \frac{(t+1)^t}{\ln t}$	$\frac{-1}{(t+1)-t}$	-TV		
				۲ (۱			
				۲) صفر			
				-1 (r			
				-7 (4			
	م مورد درست است؟	آنگاه کدا، $\mathbf{b}_{\mathbf{n+1}} = rac{\mathbf{a_n} + \mathbf{l}}{\mathbf{r}}$	$a_{n+1} = \sqrt{a_n b_n}$, $(n \in \mathbb{N})$	اگر a₁ <b₁، (<="" th=""><th>-۲۸</th></b₁،>	-۲۸		
			و $\left\{ b_{n} ight\}$ هر دو نزولیاند.				
			دى و دنبالهٔ $\left\{b_{n} ight\}$ نزولى است.	the transfer to the transfer t			
			ی و دنبالهٔ $\{\dot{b}_n\}$ صعودی است.				
			و $\left\{b_{n} ight\}$ هر دو صعودیاند.				
			∞ / \n ^r	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
		ام است؟	ی ، $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n} \left(7x + 1\right)^n$	شعاع همگرایی سرو	-۲۹		
				1 ()			
				$\frac{\frac{1}{e}}{\frac{r}{e}} (1$			
				7 (7			
				e			
				<u>e</u> (۳			

است؟
$$\int_{0}^{\frac{\pi}{7}} \ln(\frac{r + r\sin x}{r + r\cos x}) dx$$
 عدار -۳۰

- ١) صفر
- $\frac{\pi}{\epsilon}$ (7
 - 1 (4
- $\frac{\pi}{r}$ (4

9تدار
$$\int_0^1 \int_0^1 \frac{x}{x^7 + y^7} dx dy$$
 کدام است

- $\frac{\pi}{\epsilon} \ln \tau$ (1
- $\frac{\pi}{\epsilon} \frac{1}{r} \ln r$ (7
- $\frac{\pi}{\epsilon} + \frac{1}{r} \ln r$ (r
 - $\frac{\pi}{r} + \ln r$ (4

از صفحهٔ $x+y+z=\circ$ کدام است؟ $xy+(x+y)z=\pi$ کدام است؟ -x+y+z=0

- 4√4 (1
- √r (r
- √ (٣
 - ۴) صفر

$$I = \frac{\pi}{\Upsilon(k-1)}, k > 1$$
 (1

$$I = \frac{\pi}{(k-1)}, k \ge 1$$
 (7

$$I = \frac{\pi}{k-1}, k > 1$$
 (*

$$I = \frac{\pi}{k-1}, k \ge 1$$
 (4

$$\begin{cases} x^{\mathsf{Y}} + y^{\mathsf{Y}} = 1 \\ x + y + z = 1 \end{cases}$$
 و $\vec{F}(x,y,z) = (xe^x + y)\hat{i} - (y^{\mathsf{Y}} + z)\hat{j} + (ze^z + \mathsf{Y}x)\hat{k}$ در جهت $-\mathsf{TF}$ مثبت باشد. مقدار $\vec{F}.d\vec{r}$ ، کدام است؟

$$-7\pi$$
 ()

$$-\pi$$
 (Y

معاع انحنای دایرهٔ مماسی (بوسان) منحنی $\hat{r}(t) = \sinh(t)\hat{i} + \cosh(t)\hat{j}$ در لحظهٔ $t = \ln \tau$ کدام است؟

۳۶ کدام مورد نقیض گزاره زیر است؟

«تابع $f:A \rightarrow B$ دوسویی است.»

$$(\exists a, a' \in A (a \neq a' \land f(a) = f(a'))) \lor (\exists b \in B \forall a \in A f(a) \neq b)$$
 ()

$$(\exists a, a' \in A (a \neq a' \land f(a) = f(a'))) \land (\forall a \in A \exists b \in B f(a) \neq b)$$
 (7)

$$(\exists a, a' \in A (f(a) \neq f(a') \Rightarrow a \neq a')) \lor (\exists b \in B \forall a \in A f(a) \neq b)$$
 (**

$$(\exists a, a' \in A (f(a) \neq f(a') \Rightarrow a \neq a')) \lor (\forall a \in A \exists b \in B f(a) \neq b)$$
 (*

۱۳۷ فرض کنید
$$\mathbf{A}_{\mathbf{x}} = \left\{ t : 0 < t < \frac{1}{\mathbf{x}} \right\}$$
 و $\mathbf{x} \in \mathbf{I} = \left(0, 1\right]$ کدام مورد نادرست است؟

$$\bigcap_{X \in I} A_X = (\circ, 1) (1)$$

$$\bigcup_{X \in I} A_X = (\circ, \infty) (7)$$

$$\int_{X} A_{x} = (\circ, \infty)$$
 (7

$$\bigcup_{\mathbf{v}\in\mathbf{I}} \left(\bigcap_{0<\mathbf{x}\leq\mathbf{v}} \mathbf{A}_{\mathbf{x}}\right) = (0,\infty) \ (\Upsilon$$

$$\bigcap_{y \in I} \left(\bigcup_{y \le x \le 1} A_x \right) = \emptyset$$
 (4

سابطه همارزی \cong را بین زیرمجموعههای \mathbb{N} با ضابطه زیر تعریف می کنیم:

برای $A \triangle B = (A \bigcup B) \setminus (A \cap B)$ یعنی مجموعه $A \cong B$ متناهی است.

كدام مورد نادرست است؟

۱) رابطه همارزی ≅ ترتیب جزئی نیست.

۲) مجموعه ردههای همارزی شمارای نامتناهی است.

۳) هر رده همارزی شمارای نامتناهی است.

۴) همه زیرمجموعههای متناهی $\mathbb N$ در یک رده همارزی قرار دارند.

ورن کنید $\mathbf{f}: \mathbf{X} \to \mathbf{X}$ یک تابع باشد و عمل دوتایی \mathbf{A} بین زیرمجموعههای \mathbf{X} با ضابطه زیر تعریف گردد: $\mathbf{A}\Delta\mathbf{B} = (\mathbf{A} \ \Box \mathbf{B}) \ (\mathbf{A} \ \Box \mathbf{B})$

كدام مورد نادرست است؟

$$f^{-1}(A \Delta B) \subseteq f^{-1}(A) \Delta f^{-1}(B)$$
 (Y

$$f(A) \Delta f(B) \subseteq f(A \Delta B)$$
 (\)

$$f^{-1}(A) \Delta f^{-1}(B) \subseteq f^{-1}(A \Delta B)$$
 (§

$$f(A \Delta B) \subset f(A) \Delta f(B)$$
 (*

۴۰ با فرض پذیرش اصل انتخاب، کدام مورد نادرست است؟

۱) اگر تابعی پوشا از X به Y موجود باشد، آنگاه تابعی یکبهیک از Y به X موجود است.

 $.\beta \le \alpha$ يا $\alpha \le \beta$ يا $\alpha \le \beta$ يا $\alpha \le \beta$) اگر $\alpha \le \beta$ يا

۳) هر مجموعه مرتب جزئی حداقل یک زنجیر بیشین (ماکسیمال) و یک زنجیر کمین (مینیمال) دارد.

۴) اگر (\ge, A) مجموعه مرتب جزئی باشد و هر زیرمجموعه کلاً مرتب آن در A کران بالا داشته باشد، آنگاه A عضو کمین (مینیمال) دارد.

فرض کنید T یک عملگر خطی روی P_{γ} (فضای چند جملهایهای از درجه حداکثر T) با ضابطهٔ T(f(x)) = f(x) + (x+1)f'(x)

باشد. دراین صورت مقادیر ویژه T کدامند؟

$$.A = \left[a_{ij}\right]_{lo\times lo} \text{ ``` is } \begin{cases} g: M_{lo}\left(\mathbb{C}\right) \to \mathbb{C} \\ g(A) = tr(A) + \sum_{i=1}^{lo} (a_{i1} + a_{li}) \end{cases} \text{ } \begin{cases} h: \mathbb{C}^{\mathsf{Y}} \to \mathbb{C}^{\mathsf{Y}} \\ h(z_{l}, z_{l}) = (\circ, \left|z_{l}\right|) \end{cases} \text{ '`` is } -\mathsf{YY} \end{cases}$$

کدامیک از \mathbf{g} و \mathbf{g} روی \mathbf{g} تبدیل خطی هستند؟

۱) فقط h

٢) فقط ع

m) هم g و هم (٣

۴) نه g و نه h

۴۳ فرض کنید $\mathbf{A}_{\mathsf{Y} \circ \mathsf{Y} \times \mathsf{Y} \in \mathsf{Y}}$ یک ماتریس روی \mathbb{C} باشد. در این صورت کدام مورد درست است-

.b = 0 از این که b = 0، می توان نتیجه گرفت b = 0

 $.a=\circ$ از این که $a=\circ$ ، میتوان نتیجه گرفت $a=\circ$

 $Ab=\circ$ موجود است که $b\neq 0$ مراست که (۳

 $\mathbf{A}^{t}\mathbf{a}=\circ$ موجود است که $\mathbf{a}\neq\circ$ بردار ستونی مناسب (۴

و
$$n \geq r$$
 یک ماتریس $m = \begin{pmatrix} A_{n \times n} & B_{n \times n} \\ C_{n \times n} & D_{n \times n} \end{pmatrix}$ فرض کنید و معکوسپذیر باشد که $M = \begin{pmatrix} A_{n \times n} & B_{n \times n} \\ C_{n \times n} & D_{n \times n} \end{pmatrix}$

برابر است با:
$$\mathbf{det}(\mathbf{M})\,\mathbf{det}(\mathbf{H})$$
 در این صورت $\mathbf{M}^{-1}=egin{pmatrix} \mathbf{E}_{n\times n} & F_{n\times n} \\ G_{n\times n} & H_{n\times n} \end{pmatrix}$

- det(A) (1
- det(B) (Y
- det(C) (T
- det(D) (f

فرض کنید $\mathbf{A} \in \mathbf{M}_{\mathfrak{p}}(\mathbb{R})$ ماتریسی ناصفر و متقارن باشد که $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$. دراین صورت اگر $\mathbf{A} \in \mathbf{M}_{\mathfrak{p}}(\mathbb{R})$

باشند، حاصل کسر
$$\frac{\left(\operatorname{tr}\left(A\right) \right)^{\gamma}}{\operatorname{rank}\left(A\right) \left(\sum_{i=1}^{r}\lambda_{i}\right)}$$
 کدام است؟

- 1 (1
- tr(A) (Y
- rank(A) (T
 - 4 (4

(نماد Log برای سری
$$\sum_{n=1}^{\infty} n^{\frac{-n}{\text{Logn}}}$$
 کدام مورد درست است؟ (نماد $\sum_{n=1}^{\infty} n^{\frac{-n}{\text{Logn}}}$

۲) همگرای مشروط است.

۱) واگراست.

است.
$$\frac{1}{e(e-1)}$$
 است.

ست.
$$\frac{1}{e}$$
 است.

را درنظر می گیریم. کدام $P(x) = ax^T + bx^T + cx + d$ با ضابطهٔ $P: \mathbb{R} \to \mathbb{R}$ را درنظر می گیریم. کدام شرط، دوسویی بودن P را ایجاب می کند؟

- $b^{\Upsilon} \leq \Upsilon ac$ (1
- $a^{\mathsf{Y}} \leq \mathsf{Ybc}$ (Y
- $rb^{r}c \leq a^{r}$ (r
- $a^{\tau} \leq \tau b^{\tau} c$ (*

 $[a\,,b]$ ہر $g(x)=\int_a^x f(t)\,dt$ فرض کنید تابع حقیقی f بر $g(x)=[a\,,b]$ صعودی باشد. کدام مورد دربارہ تابع

نادرست است؟

۲) صعودی است.

۱) محدب است.

۴) سوسته است.

Lipschitz (۳ است.

ور درست است؟
$$\mathbf{B} = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 و $\mathbf{A} = \bigcup_{n=1}^{\infty} \left[\frac{1}{n+1}, \frac{n}{n+1}\right]$ مجموعههای $\mathbf{B} = \mathbf{A}$

A باز و مجموعه A باز و مجموعه A

۱) هر دو مجموعه باز هستند.

۴) هر دو مجموعه بسته هستند.

") مجموعه A بسته و مجموعه B باز است.

شود؟ مورد، پیوستگی یکنواخت تابع $\mathbf{f}: \mathbb{R} o \mathbb{R}$ نتیجه می شود؟ -۵۰

- ا) f پیوسته و یکبهیک است.
- ۲) f دارای مشتق پیوسته است.
- r) f پیوسته، کراندار و یکنواست.
- برای هر دنباله کوشی $\{x_n\}$ در \mathbb{R} ، دنباله $\{f(x_n)\}$ کوشی است.
- در یک دستگاه دودویی ممیز شناور نرمالشده، هر عدد ناصفر حقیقی به صورت + $(\circ/d_1d_7d_7d_7d_7)_7 + (\circ/d_1d_7d_7d_7)_7)_7$ نمایش داده می شود، که در آن، + یک عدد سهرقمی در مبنای + و ارقام + صفر یا یک بوده و + یک عدد سهرقمی در مبنای + و ارقام + صفر یا یک بوده و + یک عدد سهرقمی در مبنای + و ارقام + صفر یا یک بوده و + یک عدد سهرقمی در مبنای + یک عدد سهرقمی در مبنای + یک عدد سهرقمی در مبنای + یک عدد سهرقمی در + یک عدد سهرقمی در مبنای + یک در مب

$$y + \frac{x}{\epsilon}$$
, $x + \frac{y}{\epsilon}$ (1

$$y + \frac{x}{\epsilon}$$
, $x + y$ (7

$$x + y$$
 , $x - y$ (*

$$x + \frac{y}{\epsilon}$$
, $x - y$ (ϵ

 $x_\circ = -R < \infty$ که در آن $x_{n+1} = \frac{x_n(x_n^\intercal + \intercal R)}{\intercal x_n^\intercal + R}, n \in \mathbb{N}$ که در آن $x_n = -R < \infty$ که در آن $x_n = -R < \infty$

مفروض مىباشد، كدام است؟

$$\frac{e}{r^{\epsilon}}$$
 (7 $\frac{\epsilon}{10}$ e (1

$$\frac{e}{v_{r,o}}$$
 (f $\frac{e}{v_{r,o}}$ (f

مربعات خطا برازش کند. دراین صورت، اثر (مجموع عناصر قطری) ماتریس ضرایب در معادلات نرمال، کدام است؟ $y = c_o + c_1 t + c_7 t^7$ و (۳,۱) و (۳,۱) را به روش کمترین مربعات خطا برازش کند. دراین صورت، اثر (مجموع عناصر قطری) ماتریس ضرایب در معادلات نرمال، کدام است؟ c_7 و c_7 مقادیر ثابت و مجهول اند.)

مدد ثابت حقیقی و $h>\circ$ فرض کنید $a+ih\}_{i=1}^\infty$ یک دنبالیه باشید کیه در آن، $a+ih\}_{i=1}^\infty$ یک عیدد ثابت حقیقی و $f(x_i)=f_i$, $f''(x_i)$ اسیت. اگیر بخیواهیم مقیدار $f(x_i)=f_i$, $f(x_i)=f_i$, $f(x_i)=f_i$ با فرمیول $f(x_i)=f_i$ است? $\frac{A_1f_{i-1}+A_7f_{i-1}+A_7f_{i+1}+A_1f_{i+1}}{h^7}$

$$-\text{T} (\text{T})$$
 $-\text{T} (\text{T})$
 $-\text{T} (\text{T})$
 $-\text{T} (\text{T})$

مینگین و انحراف معیار زمان اجرای ${f A}$ و ${f B}$ استفاده می شود. میانگین و انحراف معیار زمان اجرای این دو الگوریتم به تر تیب برای ${f A}$ برابر ${f A}$ و ${f A}$ ثانیه و برای ${f B}$ برابر ${f A}$ و ${f A}$ ثانیه است. در خصوص تغییرات زمان اجرای این دو الگوریتم، چه اظهار نظری می توان نمود؟

۱) الگوريتم A كمتر است. ٢) الگوريتم B، كمتر است.

۳) نمی توان دو الگوریتم را مقایسه نمود. ۴ و الگوریتم، از نظر تغییرات یکسان هستند.

۵۷ یک رشته از کاراکترهای مختلف را درنظر بگیرید، بهنحوی که یک کاراکتر خاص قرار است در وسط آنها قرار بگیرد. برای یک رشته ۷ تایی (شامل این کاراکتر خاص)، چند روش مختلف برای قرار گرفتن کاراکترها در این رشته وجود دارد؟

Dofo (1

7) 0717

٧٢ ٥ (٣

490 (4

در یک کامپیوتر شامل d فایل داده، احتمال خراب شدن هر فایل مستقل از سایر فایلها، یکسان است. میدانیم هر شوک واردشده به کامپیوتر، دقیقاً یک فایل از d فایل را خراب می کند. اگر احتمال خراب نشدن دو فایلی که اخیراً روی کامپیوتر ایجاد شده، در اثر یک شوک برابر $\frac{4}{0}$ باشند، احتمال خراب نشدن هیچیک از d فایلی که اخیراً ایجاد شده اند، کدام است؟

$$\frac{V}{V} (V) \qquad \qquad \frac{V}{V} (V)$$

-09 براساس پژوهش صورتگرفته در مقالات حوزه یادگیری ماشینی، در آنها حداقل یکی از الگوریتههای مبتنی بر شبکههای عصبی مصنوعی یا الگوریتههای مبتنی بر آمار بیزی استفاده شده است. اگر a درصد از مقالات از الگوریتههای آمار بیزی a درصد فقط از الگوریتههای شبکه عصبی الگوریتههای شبکه عصبی استفاده کرده باشند، چنددرصد از این مقالات، فقط از الگوریتههای مبتنی بر آمار بیزی استفاده کرده اند؟

$$\frac{b-a-7c}{1\circ\circ} (7) \qquad \frac{b-a+7c}{1\circ\circ} (1)$$

$$\frac{b-a+c}{1\circ\circ} \ (f) \qquad \qquad \frac{b-a-c}{1\circ\circ} \ (f)$$

 9 ک برنامه کامپیوتری به زبان پایتون، در معرض سه نوع خطای متداول 6 6 6 7 است. احتمال این که این برنامه در معرض خطاهای 6 و نه 6 قرار گیرد، 6 است. احتمال این که برنامه هر سه خطا را داشته باشد، به شرط این که دو خطای 6 و اداشته باشد، پاشد، پاشد، احتمال این که این برنامه هر سه خطا را داشته باشد، پقدر است؟

- 0,08 (1
- 0/18 (4
- 0,77 (7
- 0,40 (4

ساختمان دادهها، طراحي الگوريتمها و مباني نظريه محاسبه:

9۱ - فرض کنید یک الگوریتم با زمان اجرای (f (n) برای تعیین میانه اعضای یک آرایه n عضوی موجود است. به کمک این الگوریتم بهترین زمان اجرای الگوریتم مرتبسازی سریع، چقدر است؟

 $O(f(n)\log n)$ (7

O(n f(n)) ()

 $O((n+f(n))\log n)$ (*

 $O(n f(n) \log n)$ (*

است v درست است v کدام مورد، درخصوص پیمایش v یک گراف همبند v راسی با شروع از راس v درست است

- است. O(n) است. (۱
- ۲) در این الگوریتم هر یال دقیقا دوبار بررسی میشود.
- ۳) رئوس براساس کمترین فاصله از راس ۷ ملاقات میشوند.
- ۴) برای یک گراف دوبخشی ابتدا گرههای بخش مقابل ۷ و سپس گرههای بخش شامل ۷ ملاقات میشوند.

i مورد ادغام i لیست مرتب با مجموع تعداد اعضای i کدام مورد درست است؟

- ۱) فقط برای i = 1 این کار در زمان O(n) قابل انجام است.
- ۲) به ازای هر مقدار دلخواه i این کار در زمان O(n) قابل انجام است.
 - ۳) به ازای i > 7 این کار در زمان $\Omega(n \log n)$ قابل انجام است.
- ۴) فقط به ازای هر مقدار ثابت i این کار در زمان O(n) قابل انجام است.

ا کدام مورد، درخصوص الگوریتم دایکسترا برای یافتن کوتاه ترین مسیر از گره ${\bf v}$ به سایر گرهها برای یک گراف ${\bf n}$ راسی و شامل ${\bf m}$ یال، درست نیست؟

- است. $O(m + n \log n)$ است.
- ۲) این الگوریتم حریصانه عمل می کند و یسگرد (back-track) ندارد.
- ۳) این الگوریتم را میتوان برای یافتن کوتاهترین مسیر هر زوج رأس نیز استفاده کرد.
- ۴) این الگوریتم برای گرافهای با وزن یال منفی به شرطی که دور با وزن منفی نداشته باشند، قابل استفاده است.

ه در بدترین حالت به ترتیب از n^{Υ} و n^{Υ} بیشتر نیستند. کدام مورد، درست است B و A در بدترین حالت به ترتیب از

- ا) برنامه B به بهتر است. B بهتر است. B بهتر است.
- T) برنامه A بهطور متوسط و برای nهای کوچک، از برنامه B بهتر است.
 - ٣) احتمالاً برنامه A از نظر برنامهنویسی سادهتر است.
 - A است. B سریع تر از برنامه B است.

ماتریس وزنها برای یک گراف در زیر داده شده است، وزن درخت فراگیر با کمترین وزن در این گراف چقدر است؟

mm (m

47 (1

71 (1

۶۷ - بهترین الگوریتم برای یافتن کوتاه ترین مسیرها بین تمام جفت رئوس (all pair shortest path) در یک گراف داده شده کدام است؟

(Floyd-warshall) فلوید _ وارشال (Floyd-warshall)

(Prime) يرايم (۱

(Dijkstra) دایکسترا (۴

(Kruskal) کروسکال (۳

اگر n اندازه ورودی الگوریتم و c و d اعداد ثابت باشند، مرتبه تابع بازگشتی زیر چیست؟

$$\begin{cases} T(1) = c \\ T(n) = YT(n-1) + d, & n \ge Y \end{cases}$$

 $O(r^n)$ (r

O(n) (1

O(nlogn) (f

 $O(n^7)$ (r

n رأس و تعداد یال دلخواه، تمام مسیرهای n حداقل مرتبه زمانی الگوریتمی که در یک گراف داده شده با ممکن بین دو رأس $i \in J$ را بهدست می آورد، چیست؟

 $O(r^n)$ (r

O(n) ()

 $O(n^r)$ (r

 $O(n^7)$ ($^{\prime\prime}$

۷۰ زمان بدترین حالت برای یافتن عنصر مینیمم در یک درخت جستجوی دودویی (binary search tree) چیست؟

$$O(n^7)$$
 (7

O(n) ()

O(nlogn) (f

O(logn) (T

n عدد صحیح است n کدام مورد درخصوص یک درخت جستجوی دودویی برای n

۲) دارای حداقل log n برگ است.

۱) می تواند دارای n-1 برگ باشد.

n-1) عمق آن حداکثر n-1 است.

۴) عمق آن log n یا + log n است.

k است و n+k است و n+1 است و n+1مستقل از n و بسیار کمتر از آن می باشد. کدام یک از الگوریتمهای زیر برای مرتب سازی این آرایه به کمترین تعداد مقایسه نیاز دارد؟

۴) مرتبسازی حبابی

۱) مرتب سازی درجی ۲) مرتبسازی سریع ۳) مرتبسازی ادغامی

۷۳ در الگوریتم کروسکال برای گراف زیر، کدام یال انتخاب نخواهد شد؟

24 (1

47 (7

79 (T

14 (4

74 (4

259 A علوم کامپیوتر (کد ۱۲۰۹ ـ (شناور)) ۷۴ کدامیک درخصوص الگوریتم دایکسترا (Dijkstra) نادرست است؟ ١) برجسب قطعي رأسها در طول الگوريتم بهترتيب غيرنزولي است. رأس، زمان اجرا $O(n^{\tau})$ است. ۳) فقط برای گرافهایی که دور جهتدار ندارند، جواب درست میدهد. ۴) فقط برای گرافهایی که وزن همه یالهای آنها نامنفی باشد، جواب درست میدهد. $A = \{1,7,7,1\}$ حاصل جمع مجموع اعضای همه زیرمجموعههای $A = \{1,7,7,1\}$ TT (T ۷۶- کدام مورد درخصوص درخت جستجوی دودویی بهینه نادرست است؟ ا) ممکن است عمق آن برابر $\frac{rn}{w}$ باشد. ۲) ممکن است عمق آن برابر $\frac{\mathsf{vn}}{\mathsf{s}}$ باشد. n درخت دودویی با n رأس است که تمام برگهای آن در سطوح nم و یا n-1م باشند. ۴) کلیدهای پرتکرارتر، در سطوح کمتری (نزدیکتر به ریشه) قرار می گیرند. ٧٧- با استفاده از درخت فضاي حالت، كدام روشها بهترتيب براي حل سه مسئله زير مناسب است؟ $\mathbf{n} \times \mathbf{n}$ وزير در صفحه شطرنج \mathbf{n} _رنگ آمیزی گراف _مجموع زيرمجموعهها (Subset Sum) ۱) بازگشت به عقب، شاخه و کران، شاخه و کران ۲) شاخه و کران، بازگشت به عقب، شاخه و کران ۴) بازگشت به عقب، بازگشت به عقب، بازگشت به عقب ٣) بازگشت به عقب، بازگشت به عقب، شاخه و کران ۱۹۸ اگر f(n) تابعی از n باشد چند مورد (موارد) صحیح اند؟ $III - f(n) + f^{\Upsilon}(n) + \sqrt{f(n)} \in \theta(f(n))$ I , II (7 ۱) فقط I 4) I. II e III III , II (T كدام كدها نمى توانند طبق الگوريتم هافمن، به عنوان بخشى از كدگذارى براى كاراكترها همزمان توليد شوند؟ 11.10.011.010 (1 0111,0110,0101,1 (7 1011,0101,110,100,0111 (7 1001,1011,0101,100,011 (4 ۸۰ حاصل رابطه بازگشتی زیر چیست؟

$$\begin{cases} T(n) = YT(\frac{n}{\varphi}) + n^{\circ/\Delta 1} & n > 1 \\ T(1) = 1 & n = 1 \end{cases}$$

 $I - f(n) + O(f(n)) \in \theta(f(n))$

 $II - f(n) \in \Omega(\sqrt{f(n)})$

$$O(\sqrt{n} \log n)$$
 (7 $O(n^{\circ/\Delta^1} \log n)$ (1) $O(\sqrt{n})$ (4 $O(n^{\circ/\Delta^1})$ (7)

الم فرض کنیم L یک زبان دارای DFA بر الفبای Σ باشد و $\Xi \in \Sigma$. کدام مبورد درخصوص زبان Δ ا درست است؟ $L' = \{ w \in \Sigma^* : wa \in L \}$

٢) منظم نيست، ولى خطى است.

۱) مستقل از متن نیست.

۴) منظم است.

٣) منظم نيست، ولي مستقل از متن است.

نین به طول ۳ یا کمتر باشد که توسط این $\Sigma = \{a,b,c\}$ مفروض است. اگر t تعداد رشتههای به طول ۳ یا کمتر باشد که توسط این DFA پذیرفته می شود، کدام مورد درخصوص t درست است؟

 $t \in [10, 70]$ (1

 $t \in [\circ, 1\circ)$ (7

 $t \in [\tau \circ, +\infty)$ (τ

 $t \in (\Upsilon \circ, \Upsilon \circ)$ (*

 α اگر L زبان عبارت منظم 1^* (0+1) r=(0+10) باشد و 1 ا0 ا0 ا0 ا1 و 1 ا0 ا0 ا0 اگر 1مورد درست است؟

$$\alpha \notin L$$
 , $\beta \in L$ (Y

 $\alpha \in L$, $\beta \in L$ ()

$$\alpha \notin L$$
 , $\beta \notin L$ (4

 $\alpha \in L$, $\beta \notin L$ (*

و $A=(Q_A\,,\Sigma\,,\delta_A\,,q_\circ\,,F_A)$ و $L_B\subseteq\Sigma^*$ و $L_A\subseteq\Sigma^*$ و خرض کنیم زبانهای $L_A\subseteq\Sigma^*$ و $L_A\subseteq\Sigma^*$ یر در $E = \{0,1,7\}$ داده شدهاند و $E = \{0,1,7\}$ اتوماتای $E = \{0,1,7\}$ به صورت زیر در $E = \{0,1,7\}$ نظر مي گيريم:

$$C = (Q_A \times Q_B, \Sigma, \delta_C, (q_o, q'_o), F_A \times F_B)$$

$$\delta_C((p,q), a) = \{(p', q) : p' \in \delta_A(p, a)\}$$

$$\bigcup \{(p, q') : q' \in \delta_B(q, a)\}$$

دو عبارت زیر، مفروض است.

 \circ ۲۱۱۰۰ و L_{C} آنگاه \circ ۱۰۱ \circ ۱:I

11:اگر $10 \in L_A$ و $10 \in L_B$ آنگاه $10 \in L_A$

کدام موارد فوق، همواره درست است؟

۱) فقط ۱

٣) هم آ و هم ١١

دو زبان L_{γ} و L_{γ} را بر $\Sigma = \{0, 1\}$ به صورت زیر، درنظر می گیریم:

 $L_1 = \{ \circ^n \setminus \circ^n \setminus \circ^n : n \ge \circ \}$ $L_v = \{w: o \circ c \mid w\}$ تعدادی فرد

از این دو زبان، کدام منظم است؟

۲) فقط ۲

۱) فقط _۱L

۳) هم L، هم ۳

دو زبان L_1 و L_1 را بر $\Sigma = \{a,b\}$ به صورت زیر درنظر می گیریم:

 $L_1 = \{w : n_a(w) = n_b(w) \text{ فيست و } aab$ شامل زيررشته $w\}$ $\mathbf{L}_{\mathbf{r}} = \{\mathbf{a}^{\mathbf{n}} \ \mathbf{b}^{\mathbf{j}} \ \mathbf{a}^{\mathbf{j}} \ \mathbf{b}^{\mathbf{n}} : \mathbf{n} \ , \ \mathbf{j} \ge \circ \}$

از این دو زبان، کدام مستقل از متن است؟

 L_{γ} as L_{γ} as L_{γ} as L_{γ} as L_{γ}

۲) فقط ۲

 $\mathrm{L}_{\scriptscriptstyle 1}$ فقط (۱

دو زبان L_{γ} و L_{γ} را بر $\Sigma = \{a,b\}$ بهصورت زیر درنظر می گیریم:

$$L_{\gamma} = \{a^n b^j a^n b^j : n, j \ge \circ\}$$

$$L_{\gamma} = \{a^n b^j : \circ \le n \le j^{\gamma}\}$$

از این دو زبان، کدام مستقل از متن است؟

$$L_{\gamma}$$
 فقط (۲ L_{γ} فقط (۱

$$L_{r}$$
 هر دو (f) نه L_{r} و نه (f)

یم: $\Sigma = \{a,b,c\}$ با متغیر شروع S بر S با قوانین تولید زیر را درنظر می گیریم:

 $S \rightarrow XY \mid W$

 $X \rightarrow aXb \mid \varepsilon$

 $Y \rightarrow CY \mid \varepsilon$

 $W \rightarrow aWc \mid z$

 $Z \rightarrow bZ \mid \varepsilon$

با قرار گرفتن کدامیک از دو مقدار a یا a به جای a در a در a b ، a در a با قرار می گیرد؟ a قرار می گیرد؟

ر) فقط c

٣) هم b هم (٣

۸۹ - اتوماتای پشتهای زیر مفروض است. اگر $\alpha = 000011$ و $\beta = 000101000 = \beta$ ، کدام یک از این دو رشته، توسط این اتوماتا پذیرش می شود؟

-9 ماشین تورینگ M با جدول انتقال زیر، داده شده است:

نماد حالت	s	o	,	#
q _o	$(q_R, \$, R)$	_	_	_
$q_{\mathbf{R}}$		(q_R, \circ, R)	$(q_R, 1, R)$	(q,,#,L)
q۱	(q_f, l, L)	(q _L ,1,L)	(q_1, \circ, L)	_
${f q_L}$	$(q_f, \$, R)$	(q_L, \circ, L)	$(q_L, 1, L)$	
q_f	-	_	-	

کدامیک از دو مورد زیر، درباره M درست است؟

q. \$ 1001+ \$qf 10100 :I

q_\$101010 + \$qf101110 :II

۱) فقط I) فقط II

٣) هم I و هم II

مبانی منطق و نظریه مجموعهها:

۹۱ کدامیک از دو استدلال زیر، معتبر است؟ تمام اعداد گویا حقیقی هستند. بعضى اعداد مختلط، گویا نیستند. بنابراین: بعضی اعداد مختلط، حقیقی نیستند. اگر من درس را یاس کرده باشم، آنگاه در میان ترم نمره خوبی گرفتهام. اگر من درس را پاس کرده باشم، آنگاه در پایان ترم نمره خوبی گرفتهام. من در میان ترم و پایان ترم نمره خوبی گرفتهام. بنابراین: من درس را پاس کردهام. (b) فقط (٢ (a) فقط (١ ۴) هیچکدام ٣) هر دو (DNF) است (p_i) است (p_i) است (p_i) است (p_i) است (p_i) $\alpha = p_1 \wedge \neg p_T$ $\beta = p_1 \vee (\neg p_r \vee \neg p_r)$ ۴) هیچکدام ٢) فقط β ٣) هردو (١) فقط α در زبان $\{\leq\}$ شامل یک رابطه دوتایی، فرض کنیم $\Sigma_{
m DLO}$ نظریه ترتیبهای خطی چگال بدون نقاط =انتهایی باشد. از دو مورد زیر، کدامیک درست است؟ ساختارهای شمارا برای Σ_{DLO} باشند، دراین صورت \mathbf{u}_{1} و \mathbf{u}_{2} یکریخت هستند. Σ_{DLO} است، یعنی برای هر جمله σ یا Σ_{DLO} یا Σ_{DLO} یا Σ_{DLO} یا Σ_{DLO} ٢) فقط ١١ ۴) هیچکدام ۳) هر دو ۱) فقط I و $\alpha = (q \rightarrow p) \rightarrow r$ فرض کنیم $\alpha = (q \rightarrow p) \rightarrow \alpha$ و $\alpha = (q \rightarrow p) \rightarrow r$ فرض کنیم $\alpha = (q \rightarrow p) \rightarrow r$ است؟ β مستلزم α است، ولی α مستلزم β نیست. α است، ولی β مستلزم α نیست. ۳) هرکدام، مستلزم دیگری است. ۴) هیچکدام، مستلزم دیگری نیست. ۹۵- فرض کنیم: S: سالم زندگی میکنیم کمتر از ماشینها استفاده می کنیم: К: مى توانيم زندگى خوبى داشته باشيم: کدام مورد، بهترین ترجمه برای عبارت زیر است: «اگر سالم زندگی میکنیم مگر آنکه کمتر از ماشینها استفاده کنیم، آنگاه نمی توانیم زندگی خوبی داشته $(\neg K \rightarrow S) \rightarrow \neg G$ (Y $S \rightarrow (\neg K \rightarrow \neg G)$ (1 $(K \rightarrow S) \rightarrow \neg G$ (§ $S \rightarrow (K \rightarrow \neg G)$ ($^{\circ}$ 9۶- از دو عبارت زیر، کدام صحیح است؟ الف _ جملات $(P(x) \land Q(x))$ و $\exists x (P(x) \land Q(x))$ معادل منطقی هستند. ب ـ جملات $\exists x P(x) \lor \exists x Q(x)$ و $\exists x Q(x) \lor \exists x Q(x)$ معادل منطقی هستند. ۴) هیچکدام ٢) فقط (ب) ١) فقط (الف) ۳) هردو

۹۷ فرض کنیم φ_n جمله زیر در زبان گرافها باشد:

 $A \cap B = \emptyset$ با مؤلفه اول و دوم زیرمجموعه ای از رأسها که |A| = |B| = n و $A \cap B = \emptyset$ ، رأس (A,B) با مؤلفه اول و دوم زیرمجموعه ای از رأسها که $w \in A$ و برای هر $w \in A \cup B$ داریم $w \in A \cup B$

 $T^* = T_{graphs} \cup \{\phi_n : n > \circ\}$ فرض کنیم

دو عبارت زیر را درنظر می گیریم:

الف T^* حداقل یک مدل شمارای نامتناهی دارد.

ب T^* دارای دو مدل شمارای نامتناهی غیریکریخت است.

از دو عبارت فوق، كدام صحيح است؟

۴) هیچکدام

۳) هردو

٢) فقط (ب)

١) فقط (الف)

۹۸- فرض کنیم:

K(x): کارخانه است X کارخانه است X

x شخص است : P(x)

H(x): پلاک فعال دارد x

S(x, y, z): می فروشد z می y x

كدام مورد، ترجمه صحيح عبارت زير است:

« کارخانهای هست که فقط به افرادی که پلاک فعال ندارند، خودرو میفروشد.»

$$\forall x [k(x) \rightarrow \forall y, z(P(z) \land \neg H(z) \rightarrow C(y) \land S(x, y, z))]$$
 (1)

$$\forall x [k(x) \rightarrow \forall y, z(C(y) \land S(x,y,z) \rightarrow P(z) \land \neg H(z))]$$
 (7

$$\exists x \ k(x) \land \forall \ z \lceil (P(z) \land \neg H(z) \rightarrow \exists y (C(y) \land S(x, y, z)) \rceil$$
 (*

$$\exists x \ k(x) \land \forall y \ , z \Big[\big(C(y) \land S(x,y,z) \big) \rightarrow \big(P(z) \land \neg H(z) \big) \Big] \ (\mathsf{f}$$

. فرض کنیم $\mathbf{L}=\left\{\mathbf{P}
ight\}$ زبان مرتبه اول باشد که \mathbf{P} نماد رابطهای دوتایی است. سه عبارت زیر را درنظر بگیرید.

$$1 - \forall x \forall y \forall z (P(x,y) \rightarrow (P(y,z) \rightarrow (P(x,z)))$$

$$Y - \forall x \forall y (P(x,y) \rightarrow (P(y,x) \rightarrow x = y))$$

 $\forall - \forall x \exists y P(x,y) \rightarrow \exists y \forall x P(x,y)$

از دو عبارت زیر، کدام همواره صحیح است؟

الف _ از (۱) و (۲) مى توان (۳) را نتيجه گرفت.

ب _ از (۲) و (۳) مى توان (۱) را نتيجه گرفت.

۴) هیچکدام

۳) هر دو

٢) فقط (ب)

١) فقط (الف)

اباشد که $\mathfrak{M}_n:n\in\mathbb{N}$ زیرساخت مقدماتی -L فرض کنیم $\mathfrak{M}_n:n\in\mathbb{N}$ دنبالهای از -L ساخت ها و ساخت M باشد. قرار می دهیم $M=\bigcup M_n$ و ساخت M را با عالم سخن M بهصورت طبیعی تعریف می کنیم. \mathfrak{M}_{n+1}

كدام مورد، صحيح است؟

- است. \mathfrak{M}_n است. (۱
-) همه \mathfrak{M}_n ها زیرساخت \mathfrak{M} هستند ولی ممکن است هیچ کدام زیرساخت مقدماتی \mathfrak{M} نباشند.
- . است. \mathfrak{M}_n همه \mathfrak{M}_n هم زیرساخت \mathfrak{M} هستند ولی حداقل یکی از \mathfrak{M}_n ها زیرساخت مقدماتی \mathfrak{M}
 - شند. \mathfrak{M}_n نباشند. \mathfrak{M}_n انباشند. \mathfrak{M}_n نباشند.

-1+1	فرض کنیم ${f A}$ مجموعه همه توابع از ${f \mathbb{N}}$ به ${f \mathbb{N}}$ که یک به	یک نیستند، و B مجموعه همه توابع یکبهیک از
	به $ \mathbb{N} $ باشد. از این دو مجموعه، کدام با مجموعه اعد $ \mathbb{N} $	اد گویا همتوان است؟
	۱) فقط A	۲) فقط B
	۳) هر دو	۴) هیچکدام
-1•٢	$\left\{ \mathbf{c},\mathbf{n} ight\} ^{\mathbf{N}}$ فرض کنیم \mathbf{C} مجموعه همه زیرمجموعههای شمارای	باشد. در این ${f c}$ با کدام مجموعه هم توان است ${f c}$
	(0,1)(1	Q (مجموعه اعداد گویا)
	{0,1} (٣	(مجموعه توانی اعداد حقیقی) $\mathrm{P}(\mathbb{R})$ (۴
-1.4	از دو نتیجه زیر، کدامیک در نظریه مجموعهها بدون اصل	، انتخاب، اثباتپذیر ن <u>یست</u> ؟
	الف $_{-}$ اگر $ \mathbf{A} \geq \mathbf{A} $ و $ \mathbf{Q} \neq \mathbf{A}$ در اینصورت، تابع پ	وشای $\mathbf{f}:\mathbf{B} o\mathbf{A}$ وجود دارد.
	ب ـ اگر تابع پوشای $A ightarrow f: B ightarrow A$ وجود داشته باشد، آنگ	اه A ≤ B
	۱) فقط (الف)	٢) فقط (ب)
	٣) هردو	۴) هیچکدام
-1.4	از دو عبارت زیر، کدام مورد درست است؟	
	الف _ مجموعه اعداد طبیعی \mathbb{N} را می توان طوری مر تب کر د	که نوع ترتیب مجموعه حاصل، اور دینال $\alpha+\alpha$ باشد.
	ب _مجموعه اعداد طبیعی	ه نوع ترتیب مجموعه حاصل، اوردینال $lpha+$ ۲ باشد.
	۱) فقط (الف)	٢) فقط (ب)
	٣) هردو	۴) هیچکدام
-1+0	اوردینال α بهصورت $\{\circ, 1, 7,\}$ تعریف می شود.	کدام مورد درخصوص 🏿 صحیح است؟
	$\omega < \omega^{\pi}$ الف $\omega < \pi^{\omega}$	
	١) فقط (الف)	٢) فقط (ب)
	٣) هردو	۴) هیچکدام
-1.8	فرض کنید $\{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}, \{\{\phi\}\}\}\}\}$ از	دو مورد زیر، کدام عضو $P(x)$ است؟
	$\{\phi, \{\phi\}, \{\{\phi\}\}\}$ الف _	
	ب _ {{\phi}}	
	١) فقط (الف)	٢) فقط (ب)
	۳) هردو	۴) هیچکدام
-1•4	. א و B و C و C و ابه صورت زیر درنظر بگیرید:	
	$\{\circ, I, T\}$ مجموعه همه توابع از $\mathbb N$ به $= \mathbf A$	
	$\mathbb N$ به $\mathbb N$ او ابع از $\mathbb R$	
	$\mathbb R$ مجموعه همه توابع از $\mathbb Q$ به = C	
	کدام مورد، درست است؟	
	A < B = C (1)	$ A = B < C $ (Υ
	A < B < C (*	A = B = C (*
-1•4	فرض کنیم S مجموعه همه دنبالههای نامتناهی از اعداد ط	بیعی و $P(S)$ مجموعه توانی S باشد. در این $P(S)$

آعداد توابع یکبهیک و پوشا از S به P(S) چقدر است؟

۱) ناشمارا ۲) صفر

۴) شمارا ولی نامتناهی ۳) متناهی ولی ناصفر

x یک مجموعه است. قرار می دهیم: x

 $\mathbf{a} = \{\beta : \beta : \beta \to \mathbf{r} \in \mathbf{f} : \beta \to \mathbf{r}$ وجود دارد $\beta \in \mathbf{a}$

با استفاده از اصول نظریه مجموعهها (ZF) می توان دید که a یک مجموعه است. از دو مورد زیر، کدام یک در مورد a در مورد a درست است؟

الف _ a اوردينال ناصفر است.

ب ـ a کوچکترین اوردینال است که a ≰x.

۳) هردو ۴

۱۱۰ از دو نتیجه زیر، کدامیک در نظریه مجموعهها بدون اصل انتخاب، اثبات پذیر نیست؟

 $n \in \mathbb{N}$ که k = n یا $k = k_0$ کاردینالی باشد که $k \le k_0$ در این صورت k = k یا

ب ـ اگر |A| = |A| در این صورت، کار دینال مجموعه همه دنبالههای متناهی از اعضای |A| برابر |A| است.

۳) هردو ۴

ریاضیات گسسته و مبانی ترکیبیات:

۱۱۱- به چند طریق می توان یک پلکان ۱۱ تایی را طی کرد، به طوری که در هر قدم، یک پله یا دو پله بتوان طی کرد؟

- 44 (1
- DD (T
- 19 (
- 144 (4

۱۱۲ کوچک ترین مقدار n چقدر است، به طوری که هر زیر مجموعه n عضوی از مجموعه $\{1,7,\dots,\$9\}$ ، شامل سه عدد صحیح y ، y و y به طوری که y ، y به طوری که y ، y به بخش پذیر باشد؟

- 14 (1
- 10 (7
- 71 (4
- 77 (4

۱۱۳− چند رشته ۱۰ رقمی از ارقام ۱، ۲ و ۳ وجود دارد که یا در پنج رقم سمت چپ، هیچ رقمی برابر ۱ نباشد یا در پنج رقم سمت راست، هیچ رقمی برابر ۲ نباشد؟

- 710 (1
- 1° × 14" (1
- 7°×777 (T
- $\Upsilon^{8} \times \Upsilon^{0} 1 (8)$

۱۱۴− میخواهیم اعداد دورقمی را در ۴۵ دسته متمایز ۲تایی توزیع کنیم، بهطوریکه دو عدد ۱۰ و ۹۹ در یک دسته نباشند. به چند طریق، این دستهبندی امکان پذیراست؟

$$40 \times \frac{40}{5}$$
 (4

$$\frac{\lambda\lambda}{\lambda} \times \frac{9 \circ !}{\zeta^{40}}$$
 (4

۱۱۵- تعداد دسته جوابهای معادله زیر در مجموعه اعداد صحیح، چقدر است؟

 $x_1 + x_7 + \cdots + x_{10} = 1 + 7 + 2 + 7 + \cdots + 19$

 $x_1 \ge 1$, $x_7 \ge 7$, ..., $x_{10} \ge 10$

$$\begin{pmatrix} \Delta \mathbf{f} \\ \mathbf{1} \circ \end{pmatrix} (\mathbf{7} \qquad \qquad \begin{pmatrix} \Delta \mathbf{f} \\ \mathbf{q} \end{pmatrix} (\mathbf{1}$$

$$\begin{pmatrix} \mathfrak{F}\Delta \\ \mathfrak{q} \end{pmatrix} (\mathfrak{F} \qquad \qquad \begin{pmatrix} \mathfrak{F}\Delta \\ \mathfrak{I}\circ \end{pmatrix} (\mathfrak{F}$$

11۶- جواب معادله بازگشتی روبهرو چیست؟

$$a_n = \lambda a_{n-\gamma} - 19 a_{n-\gamma}$$

$$c_1 r^n + c_r (-r)^n$$
 (1

$$c_1 n r^n + c_r n (-r)^n$$
 (r

$$(c_1 + c_7 n) r^n + (d_1 + d_7 n) (-r)^n$$
 (r

$$(c_1 + d_1)r^n + (c_r n + d_r n)(-r)^n$$
 (f

۱۱۷− تعداد اعضای مجموعه $\{0,0,1,1,\dots,1^{\circ}\}$ که نسبت به ۴۵ اول هستند، کدام است؟

- 48 (1
- 47 (7
- 25 (4
- V1 (4

G فرض کنید گراف نابدیهی G، یال برشی ندارد. کدام گزارههای زیر برای این گراف، درست است G

۲) هر دو دور گراف، در یک یال مشترک هستند.

۱) هر یال گراف، روی یک دور است.

۴) گراف، رأس برشی ندارد.

٣) گراف، لزوماً همبند است.

۱) دراف، راس برسی مدارد.

۱۱۹ در کدامیک از گرافهای وزن دار و همبند، کوچک ترین درخت فراگیر (MST)، یکتا نیست؟

- ۱) در هر دور، وزن یالها متمایز باشد.
 - ۲) گراف، دور نداشته باشد.
- ٣) همه يالها، وزنهاى متمايز داشته باشند.
- ۴) فقط یک یال با کمترین وزن در گراف وجود داشته باشد.

- A و دو رأس G درنظر بگیرید ($n \ge 0$) و دو رأس A را یک رأس گراف G درنظر بگیرید ($n \ge 0$) و دو رأس A –۱۲۰ و A را توسط یک یال به هم وصل کنید، هرگاه $A \cap B = A$. کدام مورد درباره این گراف، نادرست است؟
 - ١) گراف حاصل، منتظم است.
 -) گراف حاصل برای هر $\alpha \geq 1$ ، میلتونی است.
 - $q = 10 \binom{n}{a}$ تعداد یالهای این گراف، برابر است با $q = 10 \binom{n}{a}$
 - ۴) فاصله هر دو رأس گراف برای $V \leq n$ حداکثر برابر است با ۲.
 - ۱۲۱ در چند جایگشت از حروف x yy z yw z www از حروف x متوالی وجود ندارد؟
 - $7 \times 7 \times 7^7$ (7

 $7 \times 7 \times 4 \times 7 \times 7$

 $Y^{Y} \times Y^{Y} \times \Delta \times V^{Y}$ (4)

- $T^{T} \times T^{T} \times \Delta \times V$ (T
- ۱۲۲- اگر !۰۰۰ در مبنای ۱۰ نوشته شود، عدد حاصل به چند رقم صفر ختم می شود؟
 - 71 (7

Yo (1

TD (4

- 74 (4
- ۱۲۳ به چند طریق، ۳ فیزیکدان و ۵ ریاضیدان می توانند دور یک میز بنشینند، بهطوری که هیچ دو فیزیکدانی مجاور نباشند؟
 - 1440 (7

VY 00 (1

YAA (4

- 790 (T
- ۱۲۴− کوچک ترین مقدار n، به طوری که گزاره زیر همیشه درست باشد، کدام است؟
- - 10 (7

Y ()

DF (4

- 15 (5
- ۱۲۵- تعداد مسیرهای بهطول ۲ در گراف \mathbf{Q}_{w} (شکل روبهرو)، کدام است؟

- 18 (1
- TF (T
- ٣٢ (٣
- 99 (4
- ۱۲۶− به چند طریق، می توان ۱۰ کتاب متمایز را در سه ردیف از یک قفسه کتاب چید، بهطوری که در هر قفسه، حداقل ۱ کتاب باشد؟ (ترتیب کتابها در هر ردیف، مهم است.)
 - Y7×10! (7

17! (1

78×10! (4

- 11×10! (T
- ۱۲۷ فرض کنید $a_n = A + B$ جواب رابطه بازگشتی $a_n = A T a_n = A B$ باشد. مقدار $a_n = A + B$ کدام است؟
 - 7 (7

1 (1

4 (4

٣ (٣

۱۲۸ به چند طریق، می توان جدولی n imes au را با بلوکهای 1 imes au و au imes au پوشاند؟

$$Y^{n} + (-1)^{n+1}$$
 (Y

$$\frac{\mathsf{Y}^{n+1} + \left(-1\right)^n}{\mathsf{W}} \ (\mathsf{Y}^n + \left(-1\right)^n) \ (\mathsf{Y}^n +$$

 $\sum_{r=k}^{n} \binom{n}{r} \binom{r}{k}$ کدام است $n \geq k \geq \circ$ اگر ۱۲۹ ماست $n \geq k \geq 0$

$$k r^{n-k}$$
 (7 $k r^n$ (1)

$$\binom{n}{k}$$
 \mathbf{r}^{n-k} (4) $\binom{n}{k}$ \mathbf{r}^{k} (4)

۱۳۰ گراف دوری C_{70} را درنظر بگیرید. به چند طریق، می توان دو مسیر متمایز به طول ۵ انتخاب کرد، به طوری که حداقل در یک یال اشتراک داشته باشند؟ (ترتیب دو مسیر انتخابی، مهم نیست.)

مشاهده كليد اوليه سوالات آزمون كارشناسي ارشد 1403

گزینه صحیح 3

4

به اطلاع می رساند، کلید اولیه سوالات که در این سایت قرار گرفته است، غیر قابل استناد است و پس از دریافت نظرات داوطلبان و صاحب نظران کلید نهایی سوالات تهیه و بر اساس آن کارنامه داوطلبان استخراج خواهد شد. در صورت تمایل می توانید حداکثر تا تاریخ 1402/12/20 با مراجعه به سامانه پاسخگویی اینترنتی (request.sanjesh.org) نسبت به تکمیل فرم "اعتراض به کلید سوالات"/"آزمون کارشناسی ارشد سال 1403" اقدام نمایید. لازم به ذکر است نظرات داوطلبان فقط تا تاریخ مذکور و از طریق فرم ذکر شده دریافت خواهد شد و به موارد ارسالی از طریق دیگر (نامه مکتوب یا فرم عمومی در سامانه پاسخگویی و ...) یا پس از تاریخ اعلام شده رسیدگی نخواهد شد.

گروه امتحانی	نوع دفترچه	عنوان دفترچه
گروہ علوم پایه	Α	علوم كامپيوتر

شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	شماره سوال	گزینه صحیح	شماره سوال
1	1	31	3	61	4	91	4	121
2	4	32	2	62	2	92	3	122
3	2	33	3	63	4	93	3	123
4	3	34	1	64	4	94	4	124
5	2	35	2	65	4	95	2	125
6	1	36	1	66	4	96	2	126
7	4	37	4	67	2	97	1	127
8	3	38	2	68	2	98	4	128
9	1	39	3	69	2	99	4	129
10	1	40	4	70	1	100	1	130
11	1	41	3	71	3	101	4	
12	3	42	2	72	1	102	1	
13	3	43	4	73	2	103	2	
14	4	44	1	74	3	104	3	
15	3	45	1	75	2	105	2	
16	2	46	4	76	3	106	3	
17	3	47	1	77	4	107	4	
18	4	48	2	78	1	108	2	
19	3	49	2	79	4	109	3	
20	3	50	3	80	3	110	4	
21	1	51	4	81	4	111	4	
22	2	52	2	82	3	112	2	
23	4	53	3	83	4	113	3	
24	4	54	1	84	1	114	4	
25	2	55	3	85	2	115	1	
26	4	56	1	86	3	116	3	
27	4	57	3	87	4	117	3	-
28	2	58	2	88	2	118	1	
29	3	59	4	89	1	119	4	-
30	1	60	1	90	1	120	2	-

خروج

© 2024 Sanjesh Organization